DOI QR코드

DOI QR Code

임플란트 hexagon 높이에 따른 임플란트와 주위 조직의 응력분포 평가

Evaluation of the stress distribution in the external hexagon implant system with different hexagon height by FEM-3D

  • 박성재 (아산모아치과의원) ;
  • 김주현 (부산대학교 치의학전문대학원 치과보철학교실) ;
  • 김소연 (부산대학교 치의학전문대학원 치과보철학교실) ;
  • 윤미정 (부산대학교 치의학전문대학원 치과보철학교실) ;
  • 고석민 (영통베스트덴치과의원) ;
  • 허중보 (부산대학교 치의학전문대학원 치과보철학교실)
  • Park, Seong-Jae (Asan Moa Dental Clinic) ;
  • Kim, Joo-Hyeun (Department of Prosthodontics, School of Dentistry, Pusan National University) ;
  • Kim, So-Yeun (Department of Prosthodontics, School of Dentistry, Pusan National University) ;
  • Yun, Mi-Jung (Department of Prosthodontics, School of Dentistry, Pusan National University) ;
  • Ko, Sok-Min (Bestden Dental Clinic) ;
  • Huh, Jung-Bo (Department of Prosthodontics, School of Dentistry, Pusan National University)
  • 투고 : 2011.12.23
  • 심사 : 2012.01.05
  • 발행 : 2012.01.31

초록

연구 목적: 본 연구는 hexagon 높이에 따른 임플란트 각 부위와 주위 지지조직의 응력분포를 3차원 유한요소 해석을 통해 평가하여 hexagon 높이가 기계적 안정성에 미치는 영향을 평가하고자 시행되었다. 연구 재료 및 방법: 외측 연결 형태의 ${\phi}4.0mm{\times}11.5mm$ USII (Osstem Co., Pusan, Korea) 임플란트 시스템을 이용하여 하악 제 1대구치 부위에 임플란트를 식립하여 보철 수복한 경우를 연구 모델로 가정하고 임플란트 고정체의 외측 연결부인 hexagon의 높이를 각각 0.0 mm, 0.7 mm, 1.2 mm, 1.5 mm로 적용한 CAD data를 유한요소 모형화하였다. ABAQUS 6.4 (ABAQUS Inc., Providence, RI, USA)를 이용하여 산출된 응력 값 중에서 등가응력을 기준으로 각 요소(상부 치관, 지대주 나사, 고정체, 치밀골, 해면골)에서 나타나는 최대 응력 값을 비교 하였다. 결과: 외측 연결을 갖는 임플란트의 hexagon의 높이는 고정체, 지대주 나사, 상부 보철물 그리고 주위 지지골에 대해 응력 분산에 영향을 주었다. Hexagon의 높이가 증가할수록 임플란트의 응력 분산은 더 잘 이루어졌으며, 최대 응력 값의 감소를 보였다. Hexagon의 높이가 1.2 mm 이상이 되면 응력 분포에 더 이상 크게 기여하지 않았다. 결론: 외측연결을 갖는 임플란트에서 hexagon은 응력 분산에 필수적인 요소이며 그 높이가 증가할수록 더욱 효과적인 응력의 분산이 나타났다.

Purpose: To analyze the stress distribution of the implant and its supporting structures through 3D finite elements analysis for implants with different hexagon heights and to make the assessment of the mechanical stability and the effect of the elements. Materials and methods: Infinite elements modeling with CAD data was designed. The modeling was done as follows; an external connection type ${\phi}4.0mm{\times}11.5mm$ Osstem$^{(R)}$ USII (Osstem Co., Pusan, Korea) implant system was used, the implant was planted in the mandibular first molar region with appropriate prosthetic restoration, the hexagon (implant fixture's external connection) height of 0.0, 0.7, 1.2, and 1.5 mm were applied. ABAQUS 6.4 (ABAQUS, Inc., Providence, USA) was used to calculate the stress value. The force distribution via color distribution on each experimental group's implant fixture and titanium screw was studied based on the equivalent stress (von Mises stress). The maximum stress level of each element (crown, implant screw, implant fixture, cortical bone and cancellous bone) was compared. Results: The hexagonal height of the implant with external connection had an influence on the stress distribution of the fixture, screw and upper prosthesis and the surrounding supporting bone. As the hexagon height increased, the stress was well distributed and there was a decrease in the maximum stress value. If the height of the hexagon reached over 1.2mm, there was no significant influence on the stress distribution. Conclusion: For implants with external connections, a hexagon is vital for stress distribution. As the height of the hexagon increased, the more effective stress distribution was observed.

키워드

참고문헌

  1. Haraldson T, Carlsson GE. Bite force and oral function in patients with osseointegrated oral implants. Scand J Dent Res 1977;85: 200-208.
  2. Binon PP. Screw joints, components, and other intimate relationships. J Prosthet Dent 1994;72:625-628.
  3. Tolman DE, Laney WR. Tissue-integrated prosthesis complications. Int J Oral Maxillofac Implants 1992;7:477-484.
  4. Lang LA, Wang RF, May KB. The influence of abutment screw tightening on screw joint configuration. J Prosthet Dent 2002;87:74-79. https://doi.org/10.1067/mpr.2002.121488
  5. Binon PP. The effect of implant/abutment hexagonal misfit on screw joint stability. Int J Prosthodont 1996;9:149-160.
  6. Binon PP, McHugh MJ. The effect of eliminating implant/abutment rotational misfit on screw joint stability. Int J Prosthodont 1996;9:511-519.
  7. Beaty K. The role of screws in implant systems. Int J Oral Maxillofac implants 1994;9:52-54.
  8. English CE. Externally hexed implants, abutments, and transfer devices: a comprehensive overview. Implant Dent 1992;1:273-282 https://doi.org/10.1097/00008505-199200140-00009
  9. Ohrnell LO, Hirsch JM, Ericsson I, Branemark PI. Singletooth rehabilitation using osseointegration. A modified surgical and prosthodontic approach. Quintessence Int 1988;19:871-876.
  10. Patra AK, DePaolo JM, D'Souza KS, DeTolla D, Meenaghan MA. Guidelines for analysis and redesign of dental implants. Implant Dent 1998;7:355-368. https://doi.org/10.1097/00008505-199807040-00015
  11. Chung KM, Chung CH, Jeong SM. Finite element stress analysis of implant prosthesis according to platform width of fixture. J Korean Acad Prosthodont 2003;41:674-688.
  12. Bates JF, Stafford GD, Harrison A. Masticatory function - a review of the literature. III. Masticatory performance and efficiency. J Oral Rehabil 1976;3:57-67. https://doi.org/10.1111/j.1365-2842.1976.tb00929.x
  13. Jeong CM. Three-dimensional finite element analysis of the effect of cortical engagement on implant load transfer in posterior mandible. J Korean Acad Prosthodont 1999;37:607-619.
  14. Jemt T, Laney WR, Harris D, Henry PJ, Krogh PH Jr, Polizzi G, Zarb GA, Herrmann I. Osseointegrated implants for single tooth replacement: a 1-year report from a multicenter prospective study. Int J Oral Maxillofac Implants 1991;6:29-36.
  15. Jemt T, Linde′n B, Lekholm U. Failures and complications in 127 consecutively placed fixed partial prostheses supported by Bra􀆆nemark implants: from prosthetic treatment to first annual checkup. Int J Oral Maxillofac Implants 1992;7:40-44.
  16. Jemt T, Lekholm U. Oral implant treatment in posterior partially edentulous jaws: a 5-year follow-up report. Int J Oral Maxillofac Implants 1993;8:635-640.
  17. Jemt T. Fixed implant-supported prostheses in the edentulous maxilla. A five-year follow-up report. Clin Oral Implants Res 1994; 5:142-147. https://doi.org/10.1034/j.1600-0501.1994.050304.x
  18. McGlumphy EA, Mendel DA, Holloway JA. Implant screw mechanics. Dent Clin North Am 1998;42:71-89.
  19. Tolman DE, Laney WR. Tissue-integrated prosthesis complications. Int J Oral Maxillofac Implants 19927:477-484.
  20. Rangert BR, Sullivan RM, Jemt TM. Load factor control for implants in the posterior partially edentulous segment. Int J Oral Maxillofac Implants 1997;12:360-370.
  21. Weinberg LA. The biomechanics of force distribution in implantsupported prostheses. Int J Oral Maxillofac Implants 1993;8:19-31
  22. Weinberg LA, Kruger B. A comparison of implant/prosthesis loading with four clinical variables. Int J Prosthodont 1995;8:421-433.
  23. Rieger MR, Mayberry M, Brose MO. Finite element analysis of six endosseous implants. J Prosthet Dent 1990;63:671-676. https://doi.org/10.1016/0022-3913(90)90325-7
  24. Brunski JB. Biomechanical factors affecting the bone-dental implant interface. Clin Mater 1992;10:153-201. https://doi.org/10.1016/0267-6605(92)90049-Y
  25. Bergman B. Evaluation of the results of treatment with osseointegrated implants by the Swedish National Board of Health and Welfare. J Prosthet Dent 1983;50:114-115. https://doi.org/10.1016/0022-3913(83)90176-2
  26. Sertgoz A, Guvener S. Finite element analysis of the effect of cantilever and implant length on stress distribution in an implant-supported fixed prosthesis. J Prosthet Dent 1996;76:165-169. https://doi.org/10.1016/S0022-3913(96)90301-7