DOI QR코드

DOI QR Code

Exploring the Creativity of the Scientific Gifted from Analyzing Descriptive Experiment-Design

서술적 실험 설계분석을 통한 과학 영재 창의성 탐색

  • Received : 2011.10.10
  • Accepted : 2012.01.06
  • Published : 2012.02.29

Abstract

This study investigated factors of creativity and interaction between factors that are revealed when gifted students designed scientific experiments. For this, we firstly developed items which required the written process of designing experiments to explore creativity factors. Then, we used these items as a part for letters of self-introduction to students who applied for 2011 correspondence education of general physics for the Korea Physics Olympiad. 513th letters of self-introduction which were analyzed to investigate factors of creativity in view of creativity definition after researchers' consultation, which specifically means a combination of divergent and convergent thinking. The results were as follows; (1) in the step of hypothesis building, we could not only find Originality and the Flexibility & Fluency, which were factors of divergent thinking, but also Coherency and Elaborateness, which were factors of convergent thinking. (2) in the step of the hypothesis testing, we could explore Originality, Flexibility & Fluency in divergent thinking and Coherency, Reliability, Clarity, Elaborateness in convergent thinking. (3) we also figured out three creativity types of gifted students from the viewpoint that creativity is a consequence of interaction between divergent thinking and convergent thinking; a) Type A showed divergent and convergent factors of creativity in the step of hypothesis building. However, type A did not include divergent factors of creativity on the process of the hypothesis testing. b) Type B had divergent and convergent factors of creativity on the process of the hypothesis testing, but it had not convergent factors of creativity on the step of hypothesis building. c) Finally, in Type C, only divergent factors of creativity appeared on the process of the hypothesis testing, but convergent factors of creativity could be found on the step of hypothesis building and hypothesis testing.

본 연구는 학생들의 실험 설계 내용에서 나타나는 창의적 요소들을 탐색하고, 각 요소 간 상호작용을 분석하여 과학 영재들이 실험을 설계할 때 나타나는 창의성의 특징을 귀납적으로 살펴보았다. 이를 위해 우선, 서술적 실험설계 과정에서 영재들의 창의성 요소를 탐색하기 위한 문항을 개발하였다. 개발된 문항은 2011년 한국 물리올림피아드 일반물리 통신교육에 지원한 학생들에게 요구되는 자기소개서의 일부분으로 제시하였다. 실험설계 과정에서 나타나는 창의성은 발산적 사고와 수렴적 사고의 상호작용이라는 조작적 정의 하에 총 513명의 자기소개서에 포함된 실험설계 과정이 분석되었으며, 그 결과는 다음과 같다. (1) 가설 설정단계에서 나타난 창의성 요소 중 발산적 유형 의 요소는 독창성, 유창성, 융통성이었고, 수렴적 유형의 요소는 정합성, 정교성으로 나타났다. (2) 가설 검증단계에서는 창의성 요소 중 발산적 유형의 요소인 독창성, 유창성, 융통성과 수렴적 유형의 요소인 정합성, 단순성, 신뢰성, 적절성, 명료성, 정합성을 탐색할 수 있었다. (3) 가설설정단계나 검증단계에서 발산적이고 수렴적인 창의적 요소가 함께 발현되어야 창의적 실험설계라는 정의 하에 과학영재들의 창의적 실험설계 유형을 살펴 본 결과 다음과 같은 특징을 가진 3가지 유형이 탐색되었다. a) 첫 번째 유형의 특징은 가설설정단계에서 발산적이고 수렴적인 창의성을 모두 보이고, 가설검증 단계에서는 수렴적인 창의성만 보인 경우이다. b)두 번째 유형은 가설설정단계에 서 발산적 창의성이, 검증 단계에서는 발산적이고 수렴적인 창의성이 나타나는 특징을 보였다. c) 마지막으로 세 번째 유형은 가설설정단계에서 수렴적 창의성을, 가설검증단계에서 발산적 수렴적 창의성을 모두 보이는 특징을 보였다.

Keywords

References

  1. 구슬기, 박일우 (2010). 초등과학 글쓰기 지도 전략의 개발 및 적용. 초등과학교육, 29(4), 427-440.
  2. 구인선, 이종원, 강대호 (2004). 제7차의 탐구요소들에 의한 중학교 과학 3교과서의 탐구 영역 분석- 화학 분야에 대하여-. 대한화학회지, 48(4), 414-426.
  3. 김경자, 김아영, 조석희 (2000). 창의적 문제 해결력 신장을 위한 단원 개발 및 평가. 교육과정연구, 18(2), 17-45.
  4. 김선자, 최병순 (2005). 변인통제 문제해결 과정에서 나타난 초등학생의 실험설계 및 증거제시 특성. 한국과학교육학회지, 25(2), 111-121.
  5. 김은주, 이효녕, 윤일희, 강천덕 (2008). 창의적 사고 계발을 위한 고등학교 학습 프로그램 개발: 태양계 축소 모형을 중심으로. 한국지구과학회지, 29(3), 290-304.
  6. 김혜순, 강기숙 (2007). 아동의 과학 적성, 창의성, 과학 창의적 문제해결력간의 관계. 초등과학교육, 26(1), 32-40.
  7. 박남이, 임낙룡, 박경화 (2005). 제 7차 교육과정 고등학교 생물 I [자극과 반응] 단원의 탐구활동에 대한 교과서 비교 분석. 한국생물교육학회지, 33(1), 70-81.
  8. 박인숙, 강순희 (2011). 과학 창의적 문제해결 능력에 대한 현장 교사들의 인식. 한국과학교육학회지, 31(2), 314-327.
  9. 박종원 (2004). 과학적 창의성 모델의 제안-인지적 측면을 중심으로-. 한국과학교육학회지, 24(2), 375-388.
  10. 변선미, 김현주 (2011). 자유 탐구 활동에 대한 중학생들의 인식 및 자유 탐구 활동이 중학생들의 과학 탐구능력에 미치는 영향. 한국과학교육학회지, 31(2), 210-224.
  11. 송윤미, 양일호, 김주연, 최현동 (2011). 초등학교 교사들의 과학글쓰기에 대한 인식 연구. 한국과학교육학회지, 31(5), 788-800.
  12. 심재영, 김종득, 김언주 (2005). 과학영재와 일반 학생 집단 간의 창의성 비교 연구. 교육심리연구, 19(3), 563-576.
  13. 양일호, 류설진, 임성만 (2009). 생물학자와 과학 영재의 실험설계활동에서 나타나는 과정요소 및 특성 분석. 과학교육연구지, 33(2), 271-299.
  14. 이윤하, 강순희 (2011). 변인 통제 능력을 강화하기 위한 수업 프로그램의 개발 및 적용 효과 분석. 대한화학회지, 55(3), 519-528.
  15. 전영석, 박종찬(2006). 과학고등학교 학생의 물리 분야 개방적 탐구과제 수행 준비도 분석. 새물리, 52(4). 345-355.
  16. 정완호, 권재술, 정진우, 김효남, 최병순, 허명(1998). 과학과 수업모형. 교육과학사.
  17. 조연순, 최경희(2000). 창의적 문제 해결력 신장을 위한 중학교 과학 교육과정 개발. 한국과학교육학회지, 20(2), 329-343.
  18. 조연실, 주희영, 김성하, 김희백, 이길재 (2008). 과학 영재의 창의적 문제 해결력 신장을 위한 진화 수업 프로그램 개발과 적용. 한국생물교육학회지, 36(1), 1-10.
  19. 최지은, 전은주 (2009). 자기소개서 쓰기 지도를 위한 교육 내용 선정 방안. 새국어교육, 82, 439-363.
  20. 한국교육개발원 (1999). 과학영재교육을 위한 교육과정 개발 연구. 연구보고 CR 99-20-4. 서울: 한국교육개발원.
  21. 홍순원, 이용섭 (2008). 창의적 문제 해결 학습이 학생들의 과학 탐구 능력 및 과학적 태동에 미치는 영향. 초등과학교육, 27(3), 233-243.
  22. American Association for the Advancement of Science. (1993). Benchmarks for science literacy: A Project 2061 Report. New York: Oxford University Press.
  23. Barker, L. M., & Dunbar, K.(2000). Experimental design heuristics for scientific discovery: The use of "baseline and known standard"controls. International Journal of Human-Computer Studies. 53, 335-349. https://doi.org/10.1006/ijhc.2000.0393
  24. Bell, R. L., Blair, L. M., Crawford, B. A., & Lederman, N. G. (2003). Just do it? Impact of science apprenticeship program on high school students' understanding of the nature of science and scientific inquiry. Journal of Research in Science Teaching, 40(5), 487-509. https://doi.org/10.1002/tea.10086
  25. Bauer, H.H. (1994). Scientific literacy and the myth of the scientific method. Champaign, IL: University of Illinois Press.
  26. Chin, C., & Malhotra, B. (2002). Epistemologically authentic inquiry in schools: A theoretical framework for evaluating inquiry tasks. Science Education, 86(2), 175-218. https://doi.org/10.1002/sce.10001
  27. Cropley, A. J., & Urban, K. K. (2002). Programs and strategies for nurturing creativity. In K. A. Heller, F.J. Monks, F. J. Sternberg, and R. F. Subotnik(Eds.) International Handbook of Giftedness and Talent. Oxford: Elsevier Science Ltd.
  28. Feyerabend, P. (1993). Against method. New York: Verso.
  29. Gagne, F. (1991) Toward a differentiated model of giftedness and talent, In N. Colangelo & G. A. Davis (Eds) Handbook of gifted education (Boston, Allyn & Bacon).
  30. Germann, P. J., Haskins, S., & Pauls, S. (1996). Analysis of nine high school biology laboratory manuals: Promoting scientific inquiry. Journal of Research in Science Teaching, 33(5), 475-499. https://doi.org/10.1002/(SICI)1098-2736(199605)33:5<475::AID-TEA2>3.0.CO;2-O
  31. Guilford, J. P. (1956). The structure of intellect. Psychological Bulletin, 53, 267-293. https://doi.org/10.1037/h0040755
  32. Isaksen, S. G., & Treffinger, D. J. (1991). Creative learning and problem solving. In A. L. Costa(Ed.), Developing minds: Programs for teaching thinking. Alexandria, VA: Association for Supervision and Curriculum Development .
  33. Karplus, R. (1977). Science teaching and the development of reasoning. University of California: Berkely, CA.
  34. Krajcik,. J., Blumenfeld, P., Marx, R., Bass, K., & Fredricks, J. (1998). Inquiry in project-based science classrooms: Initial attempts by middle school students. The Journal of the Learning Science, 7(3), 313-350. https://doi.org/10.1080/10508406.1998.9672057
  35. Lemke, J. L. (1990). Talking science: language, learning and values. Norwood, New Jersey: Ablex Publishing.
  36. Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry. Beverly Hills, CA: Sage Publications.
  37. National Research Council. (1996). National science education standards. Washington, DC: National Academic Press.
  38. Norris, S.P. & Phillips, L.M. (2003). How literacy in its fundamental sense is central to scientific literacy. Science Education, 87(2), 224-240. https://doi.org/10.1002/sce.10066
  39. Osborne, J.F. (2002). Science without literacy: A ship without a sail? Cambridge Journal of Education, 32, 203-215. https://doi.org/10.1080/03057640220147559
  40. Phillips, D. C. (1995). The good, the bad, and the ugly: The many faces of constructivism. Educational Researcher, 24(7), 5-12.
  41. Pine, A. L., & West, L. H. T. (1986). Conceptual understanding and science learning: An interpretation of research within a sources-of-knowledge framework. Science Education, 70(5), 583-604.
  42. Shapin, S. (1996). The scientific revolution. Chicago: University of Chicago Press.
  43. Tamir, P., & Lunetta, V.N. (1981). Inquiry-related tasks in high school science laboratory handbooks. Science Education, 65, 477-484. https://doi.org/10.1002/sce.3730650503
  44. Torrance, E. P. (1984). Teaching gifted and creative learners. In M. Wittrock (Ed.), Handbook of research on teaching (3rd ed). Chicago: Rand-Mcnally.
  45. Treffinger, D. J. & Isaksen, S. G. (2005). Development Creative Problem Solving: The History, Development, and Implications for Gifted Education and Talent. Gifted Child Quarterly, 49(4), 342-353. https://doi.org/10.1177/001698620504900407
  46. Van Jooligen, W.R., & De Jong, T. (1991). Supporting hypothesis generation by learners exploring an interactive computer simulation. Instructional Science, 20, 389-404. https://doi.org/10.1007/BF00116355

Cited by

  1. An Analysis on the Variable Types of Inquiry Topics and Hypothesis Testing Methods Exhibited in Inquiry Reports of Secondary School Students vol.54, pp.3, 2015, https://doi.org/10.15812/ter.54.3.201509.393
  2. 중학교 과학영재들의 과학 창의성 평가 사례 연구 vol.45, pp.4, 2012, https://doi.org/10.15717/bioedu.2017.45.4.536