DOI QR코드

DOI QR Code

The Effect of Food Restriction on Appetite Regulating Hormones and Adiponectin Activity

단기간 절식 및 반복적 절식과 재식이에 따른 식욕조절호르몬과 아디포넥틴 활성의 변화

  • Kim, Ki-Hoon (Department of Leisure Sports, Kyunpook National University) ;
  • Kim, Hyun-Kook (Department of Physical Education, Daegu University)
  • Received : 2011.10.31
  • Accepted : 2011.12.26
  • Published : 2012.02.29

Abstract

We investigated the effects of short-term food restriction and repeated fasting and refeeding on appetite regulating hormones and adiponectin activity in rats. To investigate the acute and chronic effects of food restriction in vivo, Sprague-Dawley rats were divided into a control group (CON), a 1 day fasting group, a 2 days fasting gruop, a 3 days fasting gruop, a fasting and refeeding for 1 week gruoup and a fasting and refeeding for 2 weeks group. Blood glucose, triglyceride and total cholesterol decreased in all fasting groups compared to those in the CON group. Free fatty acid of all fasting groups was higher than those in the CON, and were lowest in the three cycle fasting and refeeding group. Blood insulin following short-term food restriction was lower than that in the CON. blood ghrelin increased significantly (p < 0.01) following the short-term food restriction, However, blood ghrelin in the repeated fasting and refeeding groups decreased significantly decreased (p < 0.01) compared to that in the CON and short-term food restriction group. In contrast, blood leptin decreased significantly (p < 0.01) in the short term food restriction group and the three cycle of fasting and refeeding group but increased in the six cycle of fasting and refeeding group. No significant differences in adiponectin contents were observed in the short-term food restriction group. But, adiponectin increased significantly (p < 0.01) following the fasting and refeeding cycles. Blood adiponectin and blood leptin levels were showed positively correlated ($r^2$ = 0.469) when all samples were analysed together.

Keywords

References

  1. Ernsberger P, Koletsky RJ, Baskin JS, Collins LA. Consequences of weight cycling in obese spontaneously hypertensive rats. Am J Physiol 1996; 270(4 Pt 2): R864-R872
  2. Jen KL, Lu H, Savona L, Watkins A, Shaw M. Long-term weight cycling reduces body weight and fat free mass, but not fat mass in female Wistar rats. Int J Obes Relat Metab Disord 1995; 19(10): 699-708
  3. Stein LJ, Stellar E, West DB, Greenwood MR, Foster GD, Feurer I, Brown J, Mullen JL, Brownell KD. Early-onset repeated dieting reduces food intake and body weight but not adiposity in dietary- obese female rats. Physiol Behav 1992; 51(1): 1-6 https://doi.org/10.1016/0031-9384(92)90196-9
  4. Graham B, Chang S, Lin D, Yakubu F, Hill JO. Effect of weight cycling on susceptibility to dietary obesity. Am J Physiol 1990; 259(6 Pt 2): R1096-R1102
  5. Wang H, Zhang H, Jia Y, Zhang Z, Craig R, Wang X, Elbein SC. Adiponectin receptor 1 gene (ADIPOR1) as a candidate for type 2 diabetes and insulin resistance. Diabetes 2004; 53(8): 2132- 2136 https://doi.org/10.2337/diabetes.53.8.2132
  6. Tschop M, Smiley DL, Heiman ML. Ghrelin induces adiposity in rodents. Nature 2000; 407(6806): 908-913 https://doi.org/10.1038/35038090
  7. Hellsten Y, Nielsen JJ, Lykkesfeldt J, Bruhn M, Silveira L, Pilegaard H, Bangsbo J. Antioxidant supplementation enhances the exercise-induced increase in mitochondrial uncoupling protein 3 and endothelial nitric oxide synthase mRNA content in human skeletal muscle. Free Radic Biol Med 2007; 43(3): 353-361 https://doi.org/10.1016/j.freeradbiomed.2007.02.029
  8. Seki Y, Berggren JR, Houmard JA, Charron MJ. Glucose transporter expression in skeletal muscle of endurance-trained individuals. Med Sci Sports Exerc 2006; 38(6): 1088-1092 https://doi.org/10.1249/01.mss.0000222837.74015.f1
  9. Yang WS, Lee WJ, Funahashi T, Tanaka S, Matsuzawa Y, Chao CL, Chen CL, Tai TY, Chuang LM. Weight reduction increases plasma levels of an adipose-derived anti-inflammatory protein, adiponectin. J Clin Endocrinol Metab 2001; 86(8): 3815-3819 https://doi.org/10.1210/jc.86.8.3815
  10. Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, Hotta K, Shimomura I, Nakamura T, Miyaoka K, Kuriyama H, Nishida M, Yamashita S, Okubo K, Matsubara K, Muraguchi M, Ohmoto Y, Funahashi T, Matsuzawa Y. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun 1999; 257(1): 79-83 https://doi.org/10.1006/bbrc.1999.0255
  11. Fasshauer M, Klein J, Neumann S, Eszlinger M, Paschke R. Hormonal regulation of adiponectin gene expression in 3T3-L1 adipocytes. Biochem Biophys Res Commun 2002; 290(3): 1084-1089 https://doi.org/10.1006/bbrc.2001.6307
  12. Azuma K, Katsukawa F, Oguchi S, Murata M, Yamazaki H, Shimada A, Saruta T. Correlation between serum resistin level and adiposity in obese individuals. Obes Res 2003; 11(8): 997-1001 https://doi.org/10.1038/oby.2003.137
  13. Benson JD, Bensadoun A. Response of adipose tissue lipoprotein lipase to fasting in the chicken and the rat--a species difference. J Nutr 1977; 107(6): 990-997 https://doi.org/10.1093/jn/107.6.990
  14. Bergo M, Wu G, Ruge T, Olivecrona T. Down-regulation of adipose tissue lipoprotein lipase during fasting requires that a gene, separate from the lipase gene, is switched on. J Biol Chem 2002; 277(14): 11927-11932 https://doi.org/10.1074/jbc.M200325200
  15. Lee JJ, Smith PJ, Fried SK. Mechanisms of decreased lipoprotein lipase activity in adipocytes of starved rats depend on duration of starvation. J Nutr 1998; 128(6): 940-946 https://doi.org/10.1093/jn/128.6.940
  16. Park SC, Park YH, Park SY, Kim JY, Park YK, Lee TH, Won KC, Kim YW. The effect of leptin level fluctuations by a repeated fasting/refeeding on the leptin sensitivity in OLETF rats. J Korean Endocr Soc 2008; 23(5): 310-318 https://doi.org/10.3803/jkes.2008.23.5.310
  17. Bence KK, Delibegovic M, Xue B, Gorgun CZ, Hotamisligil GS, Neel BG, Kahn BB. Neuronal PTP1B regulates body weight, adiposity and leptin action. Nat Med 2006; 12(8): 917-924 https://doi.org/10.1038/nm1435
  18. Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF. A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem 1995; 270(45): 26746-26749 https://doi.org/10.1074/jbc.270.45.26746
  19. Festa A, D'Agostino R Jr, Howard G, Mykkänen L, Tracy RP, Haffner SM. Chronic subclinical inflammation as part of the insulin resistance syndrome: the Insulin Resistance Atherosclerosis Study (IRAS). Circulation 2000; 102(1): 42-47 https://doi.org/10.1161/01.CIR.102.1.42
  20. Motoshima H, Wu X, Sinha MK, Hardy VE, Rosato EL, Barbot DJ, Rosato FE, Goldstein BJ. Differential regulation of adiponectin secretion from cultured human omental and subcutaneous adipocytes: effects of insulin and rosiglitazone. J Clin Endocrinol Metab 2002; 87(12): 5662-5667 https://doi.org/10.1210/jc.2002-020635
  21. Wolfe BE, Jimerson DC, Orlova C, Mantzoros CS. Effect of dieting on plasma leptin, soluble leptin receptor, adiponectin and resistin levels in healthy volunteers. Clin Endocrinol (Oxf) 2004; 61(3): 332-338 https://doi.org/10.1111/j.1365-2265.2004.02101.x
  22. Numao S, Suzuki M, Matsuo T, Nomata Y, Nakata Y, Tanaka K. Effects of acute aerobic exercise on high-molecular-weight adiponectin. Med Sci Sports Exerc 2008; 40(7): 1271-1276 https://doi.org/10.1249/MSS.0b013e31816a9ee5
  23. O'Leary VB, Jorett AE, Marchetti CM, Gonzalez F, Phillips SA, Ciaraldi TP, Kirwan JP. Enhanced adiponectin multimer ratio and skeletal muscle adiponectin receptor expression following exercise training and diet in older insulin-resistant adults. Am J Physiol Endocrinol Metab 2007; 293(1): E421-E427 https://doi.org/10.1152/ajpendo.00123.2007
  24. Hara T, Fujiwara H, Nakao H, Mimura T, Yoshikawa T, Fujimoto S. Body composition is related to increase in plasma adiponectin levels rather than training in young obese men. Eur J Appl Physiol 2005; 94(5-6): 520-526 https://doi.org/10.1007/s00421-005-1374-8
  25. Ryan AS, Berman DM, Nicklas BJ, Sinha M, Gingerich RL, Meneilly GS, Egan JM, Elahi D. Plasma adiponectin and leptin levels, body composition, and glucose utilization in adult women with wide ranges of age and obesity. Diabetes Care 2003; 26(8): 2383- 2388 https://doi.org/10.2337/diacare.26.8.2383
  26. Tschop M, Weyer C, Tataranni PA, Devanarayan V, Ravussin E, Heiman ML. Circulating ghrelin levels are decreased in human obesity. Diabetes 2001; 50(4): 707-709 https://doi.org/10.2337/diabetes.50.4.707
  27. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 1999; 402(6762): 656-660 https://doi.org/10.1038/45230
  28. Takaya K, Ariyasu H, Kanamoto N, Iwakura H, Yoshimoto A, Harada M, Mori K, Komatsu Y, Usui T, Shimatsu A, Ogawa Y, Hosoda K, Akamizu T, Kojima M, Kangawa K, Nakao K. Ghrelin strongly stimulates growth hormone release in humans. J Clin Endocrinol Metab 2000; 85(12): 4908-4911 https://doi.org/10.1210/jc.85.12.4908
  29. Hataya Y, Akamizu T, Takaya K, Kanamoto N, Ariyasu H, Saijo M, Moriyama K, Shimatsu A, Kojima M, Kangawa K, Nakao K. A low dose of ghrelin stimulates growth hormone (GH) release synergistically with GH-releasing hormone in humans. J Clin Endocrinol Metab 2001; 86(9): 4552-4555 https://doi.org/10.1210/jc.86.9.4552
  30. Nakazato M, Murakami N, Date Y, Kojima M, Matsuo H, Kangawa K, Matsukura S. A role for ghrelin in the central regulation of feeding. Nature 2001; 409(6817): 194-198 https://doi.org/10.1038/35051587
  31. Shintani M, Ogawa Y, Ebihara K, Aizawa-Abe M, Miyanaga F, Takaya K, Hayashi T, Inoue G, Hosoda K, Kojima M, Kangawa K, Nakao K. Ghrelin, an endogenous growth hormone secretagogue, is a novel orexigenic peptide that antagonizes leptin action through the activation of hypothalamic neuropeptide Y/Y1 receptor pathway. Diabetes 2001; 50(2): 227-232 https://doi.org/10.2337/diabetes.50.2.227
  32. Kraemer RR, Castracane VD. Exercise and humoral mediators of peripheral energy balance: ghrelin and adiponectin. Exp Biol Med (Maywood) 2007; 232(2): 184-194
  33. Zhang Y, Matheny M, Zolotukhin S, Tumer N, Scarpace PJ. Regulation of adiponectin and leptin gene expression in white and brown adipose tissues: influence of beta3-adrenergic agonists, retinoic acid, leptin and fasting. Biochim Biophys Acta 2002; 1584 (2-3): 115-122 https://doi.org/10.1016/S1388-1981(02)00298-6
  34. Maeda N, Takahashi M, Funahashi T, Kihara S, Nishizawa H, Kishida K, Nagaretani H, Matsuda M, Komuro R, Ouchi N, Kuriyama H, Hotta K, Nakamura T, Shimomura I, Matsuzawa Y. PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes 2001; 50(9): 2094-2099 https://doi.org/10.2337/diabetes.50.9.2094
  35. Montague CT, Prins JB, Sanders L, Digby JE, O'Rahilly S. Depot- and sex-specific differences in human leptin mRNA expression: implications for the control of regional fat distribution. Diabetes 1997; 46(3): 342-347 https://doi.org/10.2337/diabetes.46.3.342
  36. Rosenbaum M, Pietrobelli A, Vasselli JR, Heymsfield SB, Leibel RL. Sexual dimorphism in circulating leptin concentrations is not accounted for by differences in adipose tissue distribution. Int J Obes Relat Metab Disord 2001; 25(9): 1365-1371 https://doi.org/10.1038/sj.ijo.0801730