DOI QR코드

DOI QR Code

EES 프레임워크를 위한 하이브리드 생산설비 데이터 습득 시스템(HEDAS)의 설계 및 구현

Design and Implementation of a Hybrid Equipment Data Acquisition System(HEDAS) for Equipment Engineering System(EES) Framework

  • 투고 : 2011.11.14
  • 심사 : 2011.12.27
  • 발행 : 2012.02.29

초록

본 논문은 장비엔지니어링 시스템(EES) 프레임워크에서 반도체와 광전자 제조장비를 위한 새로운 하이브리드 생산설비데이터 습득 시스템을 설계하고 구현한다. 장비엔지니어링 분야에서 장비로부터 수집되는 데이터 량이 급격히 증가하고 있다. 제안된 HEDAS(Hybrid Equipment Data Acquisition System)는 EES 프레임워크에서 발생하는 대용량의 실시간 데이터를 효율적으로 처리한다. 또한, 제안된 시스템은 실시간 EES 응용 뿐만 아니라 비실시간 EES 응용을 지원할 수 있다. 실시간 EES 응용을 위해서 HEDAS는 메모리 기반의 연속질의와 필터링 기술을 이용하여 고속의 실시간 처리를 수행한다. HEADS는 비 실시간 장비 데이터를 HEADS 기반의 데이터베이스 또는 기존의 데이터베이스에 선택적으로 저장할 수 있다. 특히, 급격하게 증가하는 장비 데이터에 대해 디스크 저장 비용을 절감하기 위해 타임스템프 기반의 압축 인덱싱과 질의처리 기법을 제공한다. HEDAS는 EES 프레임워크에서 대용량의 실시간 및 비 실시간 장비 데이터를 수집하여 다양한 EES 응용에 수집된 데이터를 전송할 수 있는 효율적인 시스템이다.

In this paper we design and implement a new Hybrid Equipment Data Acquisition System (HEDAS) for data collection of semiconductor and optoelectronic manufacturing equipments in the equipment engineering system(EES) framework. The amount of the data collected from equipments have increased rapidly in equipment engineering system. The proposed HEDAS efficiently handles a large amount of real-time equipment data generated from EES framework. It also can support the real-time ESS applications as well as non real-time ESS applications. For the real-time EES applications, it performs high-speed real-time processing that uses continuous query and filtering techniques based on memory buffers. The HEDAS can optionally store non real-time equipment data using a HEDAS-based database or a traditional DBMS-based database. In particular, The proposed HEDAS offers the compression indexing based on the timestamp of data and query processing technique saving the cost of disks storage against extremely increasing equipment data. The HEDAS is efficient system to collect huge real-time and non real-time equipment data and transmit the collected equipment data to several EES applications in EES framework.

키워드

참고문헌

  1. International SEMATECH, Equipment Engineering Capabilities (EEC) Guidelines, Version 2.5, 2002.
  2. Rockwell Automation, "Industry White Paper - Making Sense of e-Manufacturing: A Roadmap for Manufacturers," 2000. http://www.rockwellautomation.com/
  3. ISMI, International SEMATECH Manufacturing Initiative. http://www.sematech.org/
  4. SEMI, Semiconductor Equipment and Material International. http://www.semi.org/
  5. Yu-Chuan Su, "Embedded System Framework Design for Data Collection and Analysis in the Semiconductor and Optoelectronic Industries," ICIEA 2009, pp.76-81, 2009.
  6. Bistel, EES Framework.pdf, http://www.bistel-inc.com
  7. Kalappa, N., Moyn e, J., Parrott, J. and Li, Y. "Practical Aspects Impacting Time Synchronization Data Quality in Semiconductor Manufacturing," Proceedings of AEC/APC Symposium, October 2006.
  8. Parker, J., Reath, M., Krauss, A.F., Campbell, W.J. "Monitoring and Preventing Arc-Induced Wafer Damage in 300mm Manufacturing," 2004 International Conference on Integrated Circuit Design and Technology, p.131-134, 2004.
  9. Yasutsugu Usami, Isao Kawata, Hideyuki Yamamoto, Hiroyoshi Mori, and Motoya Taniguchi, "e-Manufacturing System for Next-generation Semiconductor Production," HITACHI Review Vol.51, No., pp.84-89, 2002.
  10. Ya-Shian Li-Baboud, Xiao Zhu, Dhananjay Anand, Sulaiman Hussaini, and James Moyne, "Semiconductor Manufacturing Equipment Data Acquisition Simulation for Timing Performance Analysis," ISPCS 2008, pp.77-82,2008.
  11. Altibase, EES solution for Semiconductor product ivity management using Hybrid DBMS, http://www.altibase.com.
  12. http://www.oracle.com
  13. http://www.ibm.com/db2
  14. http://www.mysql.com
  15. Motwani, R. et al., "Query Processing, Approximation, and Resource Management in a Data Stream Management System," In Proc. the First Biennial Conf. on Innovative Data Systems Research, Asiloma, California, pp. 245-256, Jan. 2003.
  16. Long Wen, "Development of MES based on component and driven by ontology," International Seminar on Future Information Technology and Management Engineering 2008, pp.648-651, 2008.
  17. T. J. Chua, M. W. Liu, F. Y. Wang, W. J. Yan and T. X. Cai, "An intelligent multi-constraint finite capacity-based lot release system for semiconductor backend assembly environment," Robotics and Computer-Integrated Manufacturing. 23 (3), pp. 326-338, 2007. https://doi.org/10.1016/j.rcim.2006.02.004
  18. R. Sandell and K. Srinivasan, "Evaluation of lot release policies for semiconductor manufacturing system," Proceedings of the 1996 winter simulation conference, pp.1014-1022.1996.
  19. F. T. Cheng, E. Shen, J. Y. Deng and K. Nguyen, "Development of a system framework for the computer-integrated manufacturing execution system: a distributed object-oriented approach," International Journal of Computer Integrated Manufacturing, 12 (5) (1999) 384-402. https://doi.org/10.1080/095119299130137
  20. Seung Woo Lee and Hwa Ki Lee, "Data acquisition system of compound semiconductor fabrication," Journal of Mechanical Science and Technology 21, pp.2149-2158, 2007. https://doi.org/10.1007/BF03177475
  21. D. Carney, U. Cetinternel, M. Cherniack, C. Convey, S. Lee, G. Seidman, M. Stonebraker, N. Tatbul, S. Zdonik. "Monitoring Streams: New Class of Data Management Applications," In Proc. Int. Conf. on Very Large Data Bases, pp. 215-226, 2002.
  22. J. Chen, D. DeWitt, F. Tian, Y. Wang. "NiagaraCQ: A Scalable Continuous Query System for Internet Databases," In Proc. ACM Int. Conf. on Management of Data, pp.379-390, 2000.
  23. R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar, G. Manku, C. Olston, J. Rosenstein, R. Varma. "Query Processing, Approximation, and Resource Management in a Data Stream Management System," In Proc. Conf. on Innovative Data Syst. Res, pp. 245-256, 2003.
  24. Sang Ki Kim, Sung Ha Baek, Dong Wook Lee, Warn Il Chung, Gyoung Bae Kim, Hae Young Bae, "Data Source Management using weight table in u-GIS DSMS," Journal of Korea Spatial Information System Society, Vol. 11, No.2, pp.27-33, 2009.