DOI QR코드

DOI QR Code

Solid Descending Velocity by Gravity in a Vertical Downcomer

수직관에서 중력에 의한 고체하강속도

  • Ryu, Ho-Jung (Greenhouse Gas Department, Korea Institute of Energy Research) ;
  • Park, Jaehyeon (Greenhouse Gas Department, Korea Institute of Energy Research) ;
  • Shun, Do-Won (Greenhouse Gas Department, Korea Institute of Energy Research) ;
  • Lee, Seung-Yong (Greenhouse Gas Department, Korea Institute of Energy Research)
  • 류호정 (한국에너지기술연구원 온실가스연구단) ;
  • 박재현 (한국에너지기술연구원 온실가스연구단) ;
  • 선도원 (한국에너지기술연구원 온실가스연구단) ;
  • 이승용 (한국에너지기술연구원 온실가스연구단)
  • Received : 2011.11.23
  • Accepted : 2011.12.30
  • Published : 2012.06.01

Abstract

New experimental method to measure solid descending velocity in a vertical downcomer was presented and effects of downcomer diameter and particle properties on descending velocities for Geldart group A, B, and D particle have been measured and investigated. The effect of initial solid inventory on solid descending velocity was negligible. However, solid flow rate, solid circulation rate and solid descending velocity increased as the downcomer diameter increased. Moreover, solid descending velocity increased linearly as the downcomer diameter increased and showed distinguishable trend for Geldart group D particle from Geldart group A and B particles. Empirical correlations of solid descending velocity for Geldart group D and Geldart group A and B particles have been derived based on the measured values. The correlations could predict well the solid descending velocities.

수직 고체하강관에서 고체하강속도를 측정할 수 있는 편리한 실험방법을 제시하였으며 Geldart 분류 A, B, D 입자를 사용하여 수직관의 직경 및 입자특성 변화에 따른 고체하강속도를 측정 및 고찰하였다. 초기 입자 장입량 변화에 따른 고체하강속도의 변화는 크지 않았으며 고체하강관 직경이 증가함에 따라 고체흐름속도, 고체순환속도 및 고체하강속도가 증가하는 경향을 나타내었다. 특히 고체하강속도의 경우 모든 입자에 대해 하강관의 직경이 증가함에 따라 직선적으로 증가하는 경향을 나타내었으며, Geldart 분류 A 및 B 입자와 Geldart 분류 D 입자의 결과가 확실하게 구별되는 경향을 나타내었다. 측정된 고체하강속도를 바탕으로 Geldart 분류 A 및 B 입자계와 D 입자계에 대한 고체하강속도 상관식을 제시하였으며 측정값과 유사한 값을 예측할 수 있었다.

Keywords

Acknowledgement

Supported by : 한국에너지기술평가원(KETEP)

References

  1. Knowlton, T. M., Proceedings of the 6th International Conference on Fluidized Bed Combustion, Atlanta, Georgia(1980).
  2. Kunii, D. and Levenspiel, O., Fluidization Engineering, 2nd ed., Butterworth-Heinemann, MA(1991).
  3. Kim, K. C., Kim, K. Y., Park, Y. C., Jo, S. H., Ryu, H. J. and Yi, C. K., "Study of Hydrodynamics and Reaction Characteristics of K-based Solid Sorbents for $CO_2$ Capture in a Continuous System Composed of Two Bubbling Fluidized-bed Reactors," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 48(4), 499-505(2010).
  4. Ryu, H. J., Jin G. T., Lim, N. Y. and Bae, S. Y., "Reaction Characteristics of Five Kinds of Oxygen Carrier Particles for Chemical-looping Combustion," Trans. Korean Hydrogen Energy Society, 14(1), 24-34(2003).
  5. Ryu, H. J. and Jin, G. T., "Reactivity and Attrition Resistance of Three Oxygen Carrier Particles for Chemical-looping Combustor," Trans. Korean Hydrogen Energy Society, 15(3), 208-209(2004).
  6. Geldart, D., Gas Fluidization Technology, 1st ed., John Wiley & Sons Ltd., Chichester(1986).
  7. Kunii, D. and Levenspiel, O., Fluidization Engineering, 1st ed., John Wiley and Sons Inc., New York, NY(1969).