DOI QR코드

DOI QR Code

Phase Change of Calcium Carbonate by Adding Polymers

고분자 첨가에 의한 탄산칼슘의 상 변화

  • Han, Hyun-Kak (Department of chemical Engineering, Soonchunhyang University) ;
  • Jeon, Je-Sung (Department of chemical Engineering, Soonchunhyang University) ;
  • Kim, Mi-Sun (Department of chemical Engineering, Soonchunhyang University)
  • 한현각 (순천향대학교 나노화학공학과) ;
  • 전제성 (순천향대학교 나노화학공학과) ;
  • 김미선 (순천향대학교 나노화학공학과)
  • Received : 2011.06.24
  • Accepted : 2011.07.26
  • Published : 2012.04.01

Abstract

Phase change of calcium carbontae crystals in crystallization of precipitated calcium carbonate was researched by adding additives such as ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTPA), citric acid (CIT) and pyromellitic amid (PMA). At low temperature $20^{\circ}C$, calcite crystal was made. At high temperature $80^{\circ}C$, aragonite crystal was made without additives. At middle temperature $40^{\circ}C$ and $60^{\circ}C$, Aragonite crystal also made by adding EDTA, DTPA. The crystal growth of Aragonite was retarded by the presence of CIT, PMA and the single phase of calcite was made. It was found that additives were important factors to make the single phase of calcium carbonate.

침전탄산칼슘 결정화계에서 첨가제인 ethylenediaminetetraacetic acid(EDTA), diethylene triaminepentaacetic acid(DTPA), citric acid(CIT), pyromellitic amid(PMA) 첨가에 의한 탄산칼슘 결정의 형상 변화를 연구하였다. 첨가제를 넣지 않았을 때 낮은 온도 $20^{\circ}C$에서는 calcite 결정이 생성되었고, 높은 온도 $80^{\circ}C$에서는 aragonite 결정이 생성되었으며 EDTA와 DTPA 첨가에 의한 40, $60^{\circ}C$ 중간온도에서는 aragonite 결정이 생성됨을 알 수 있었다. CIT와 PMA 첨가에 의해 aragonite의 성장이 지연되었으며 calcite 단일상이 나타났다. 첨가제가 단일상의 탄산칼슘을 만드는데 중요한 요소임이 발견되었다.

Keywords

References

  1. Han, H. K. and Kwon, C. S., "Phase Change of Calcium Carbonate Crystals by Adding Additives," J. Korea Academia-Industrial Cooperation Soc., 11(10) 4069-4074(2010). https://doi.org/10.5762/KAIS.2010.11.10.4069
  2. Han, H. K. and Lee, J. H., "The Effect of Fine Particles on the Crystal Size Distribution in the Seeded Batch Crystallizer," Korean J. Chem. Eng., 46(6) 465-470(2004).
  3. Kim, J. A., Han, H. K., Kim, B. M. and Pyun, Y. R., "Morpholygy Change by Concentration of PAA and Temperature in the Calcium Carbonate Precipitation System," Theor. Appl. Chem. Eng., 12(2) 1580-1583(2006).
  4. Westin, K. J. and Rasmuson, A. C., "Crystal Growth of Aragonite and Calcite in Presence of Citric Acid, DTPA, EDTA and Pyromellitic Acid," J. ColloidandInterface Science, 359-369(2005).
  5. Kitamura, M., "Crystallization of Aragonite in the Causticizing Reaction," Powder Technol., 33-39(2002).
  6. Vucak, M. and Perik, J., "The Examination of the Phase Transformation of Aragonite Into Calcite by Means of DSC Analysis," Thermochim. Acta, 245-254(1992).
  7. Lyu, S. G., Ryu, S. O. and Park, Y. H., "Quantitative Analysis of Calcium Carbonate Polymorphs by X-Ray Diffraction," Korean J. Chem. Eng., 543-547(1998).
  8. Gutjahr, A., Dabringhaus, H. and Lacmann, R., "Effect of Organic Additives on the Morphology of Calcium Carbonate Particles in the Presence of CTAB," J. Cryst. Growth, 158-164(1996).
  9. Ahn, J. H., Joo, S. M. and Kim, H. S., "Effect of Reaction Temperature on the $CaCO_3$ Crystalling Powder for the Synthesis of Basic Calcium Carbonate Process," 2nd Asian Conference in Crystal Growth and Crystal Technology(2002).
  10. Choi, K. S., Ahn, J. H. and Lee, H. L., "Preparation of Acicular Type Aragonite PCC Powders by Carbonation Process," PACRIM4 (Ceramics in Novel Service Environments) An International Conference on Advanced Ceramics and Glasses, 417-425(2001).

Cited by

  1. 연속식결정화기 정상상태에서 탄산칼슘 결정크기 변화 vol.18, pp.7, 2012, https://doi.org/10.5762/kais.2017.18.7.714