DOI QR코드

DOI QR Code

Extraction of Carbohydrates and Minerals from Laminaria Using Organic Acid

다시마 뿌리로부터 유기산을 이용한 다당과 미네랄 추출

  • Received : 2011.09.02
  • Accepted : 2011.09.24
  • Published : 2012.04.01

Abstract

Laminaria roots have not been practically used in Korea. In this study, the extraction process of carbohydrates and minerals from Laminaria roots was investigated and the properties of extracted components were measured. Hydrochloric acid generally used in carbohydrate extraction from seaweeds in order to obtain high extraction yield. But in this work, to utilize extracted components as a functional food material, organic acids such as citric acid were used. Organic acid as extraction solvent has low extraction yield compared to strong acids. Therefore optimum condition for maximum yield was investigated in carbohydrate extraction from Laminaria roots using organic acid. We measured the extraction yields of carbohydrate with variation of extraction temperature, extraction time, concentration of organic acid and particle size of samples. The extraction yield increased as the particle size decreased and temperature became high. The extraction yield was 19.0 wt% after 4.0 hours extraction with 0.2 wt% citric acid at $100^{\circ}C$. Potassium concentration was high compared other minerals in extraction solution, that is, the ratio of K/Na was about 3.0. Fucoidan from Laminaria roots had same carbohydrate composition and lower molecular weight compared that of Undaria pinnatifida.

국내에서는 다시마 뿌리가 아직 활용되지 않고 있다. 본 연구에서는 다시마 뿌리에서 탄수화물과 미네랄 등을 추출하는 공정을 개발하고 이들의 특성을 측정하였다. 해조류의 다당류 추출은 수율을 높이기 위해서 염산을 많이 사용하는데 본 연구에서는 기능성 식품에 이용하기 위해 구연산과 같은 유기산을 사용해 추출하였다. 유기산은 추출 효율이 강산에 비해 낮으므로 최적의 추출 조건을 찾는 연구를 하였다. 추출온도, 추출시간, 유기산의 농도, 시료 입자 크기 등을 변화시키며 다당 수율을 측정하는 실험을 하였다. 시료 입자가 작을수록 추출 온도가 높을수록 수율은 증가하였다. $100^{\circ}C$에서 구연산 농도 0.2 wt%로 4.0시간 추출했을 때 수율은 19%였다. 다시마뿌리 추출액의 K/Na 비가 약 3으로 칼륨이 많이 함유되어 있었다. 다시마 뿌리에서 추출한 후코이단은 미역에서 추출한 후코이단과 비교해 당의 조성은 비슷하였으나, 분자량은 더 작았다.

Keywords

Acknowledgement

Supported by : 중소기업청

References

  1. Tatiana, N. Z., Nataliiya, M. S., Irina, B. P., Vladimir, V. I., Andrey, S. S., Elena, V. S. and Lyudmila, A. E., "A New Procedure for the Separation of Water-soluble Polysaccharides from Brown Seaweeds," Carbohydr. Res., 322, 32-39(1999). https://doi.org/10.1016/S0008-6215(99)00206-2
  2. Fortun, A., Khalil, A., Gagne, D., Douziech, N., Kuntz, C. and Dupuis, G., "Monocytes Influence the Fate of T Cells Challenged with Oxidised Low Density Lipoproteins Towards Apoptosis or MHC-restricted Proliferation," Atherosclerosis, 156, 11-21(2001). https://doi.org/10.1016/S0021-9150(00)00575-X
  3. Collis, S., Fisher. A. M., Tapon-Bretaudiere, J., Boisson, C., Durand, P. and Jozefonvicz, J., "Anticoagulant Properties of a Fucoidan Fraction," Thtombosis Res., 64(2), 143-154(1991). https://doi.org/10.1016/0049-3848(91)90114-C
  4. Mauray, S., Raucourt, E., Talbot, J., Jozefowicz, M. and Fischer, A., "Mechanism of Factor IXa Inhibition by Antithrombin in the Presence of Unfractionated and Low Molecular Weight Heparins and Fucoidan," Biochimica et Biophysica Acta-Protein Structure and Molecular Enzymology, 1387(1-2), 184-194(1998). https://doi.org/10.1016/S0167-4838(98)00120-4
  5. Saito, A., Yoneda, M., Yokohama, S., Okada, M., Haneda, M. and Nakamura, K., "Fucoidan Prevents Concanavalian A-Induced Liver Injury Through Induction of Endogenous 1L-10 in Mice," Hepatol. Res., 35(3), 190-198(2006).
  6. Oomizu, S., "Fucoidan Prevents Cegermline Transcription and $NF{\kappa}E$ p52 Trans Location for IgE Production in B Cells," Biochem. Biophy. Res. Comm., 350(3), 501(2006). https://doi.org/10.1016/j.bbrc.2006.08.009
  7. Haug, A., "Ion Exchange Properties of Alginate Fractions," Acta Chem. Scand,. 13, 1250-1251(1959). https://doi.org/10.3891/acta.chem.scand.13-1250
  8. Haug, A., "The Affinity of Dome Divalent Metals to Different Types of Alginates," Acta Chem. Scand., 15, 1794-1795(1961). https://doi.org/10.3891/acta.chem.scand.15-1794
  9. Harrison, G. E., Humphreys, E. R., Sutton, A. and Shephard, H., "Strontium Uptake in Rats on Alginate Supplemented Diet," Science, 152, 655-656(1966). https://doi.org/10.1126/science.152.3722.655
  10. Armstrong, B., Van Merwyk, A. J. and Coates, H., "Blood Pressure in Seventh-day Advantist Vegeterians," Am. J. Epidemiol., 105, 444-449(1977).
  11. Gardey, T., Burstyn, P. G. and Taylor, T. G., "Fat Induced Hypertention in Rabbits. I. The Effects of Fiber on the Blood Pressure Increase Induced by Coconut Oil," Proc. Nutr. Soc., 37, 97A(1978).
  12. Kennedy, M., Burstyn, P. G. and Husbands, D. R., "Fat Induced Hypertension in Rabbits. 2. The Effects of Feeding Diets Containing High Concentrations of Safflower Oil & Palm Oil," Proc. Nutr. Soc., 37, 98A(1978).
  13. Wright, A., Burstyn, P. G. and Gibney, M. J., "Dietary Fiber and Blood Pressure," Br. Med. J., 2, 1541-1543(1979). https://doi.org/10.1136/bmj.2.6204.1541
  14. Brussard, J. H., Van Raajj, J. M. A., Stasse-Wolthuis, M., Katan, M. B. and Hautvast, J. G. A. J., "Blood Pressure and Diet in Normotensive Volinteers: Absence of an Effect of Dietary Fiber, Protein, or Fat," Am. J.Clin. Nutr., 34, 2023-2029(1981).
  15. Kimmura, T., Takahashi, K., Ueda, Y., Obika, H., Kobayashi, Y. and Tsuji, K., "Effects of the Primary Structure of Alginate on Fecal Excretion of Sodium in Rats," Nippon Nogeikagaku Kaishi, 67, 1177-1183(1993). https://doi.org/10.1271/nogeikagaku1924.67.1177
  16. Hedeki, O., Jitsuo, S. and Yoshinari, K., "Direct Control of the Constituents Ratio in a Wide Range in Alginate Produced by Azobacter Vinelandii," Biosci. Biotechnol. Biochem., 57, 332-336(1993). https://doi.org/10.1271/bbb.57.332
  17. Kobayashi, N., Kanazawa, Y., Yamabe, S., Iwata, K., Nishizawa, M., Yamagishi, T., Nishikaze, O. and Tsuji, K., "Effects of Depolymerized Sodium Alginate on Serum Total Cholesterol in Healthy Women with a High Cholesterol Intake," J. Home Econo. Japan, 48, 255-230(1997).
  18. Hajime, O., Yasushi, S., Kanto, Y., Isamu,U. and Koichi, K., "Possible Antitumor Promoting Properties of Marine Algae and in Vitro Activity of Wakame Seaweed Extract," Biosci. Biotechnol. Biochem., 56, 994-999(1994).
  19. Fujiki, K., Matsuyama, H. and Yano, T., "Protective Effect of Sodium Alginates Against Bacterial Infection in Common Carp, Cyprinus Carpio," L. J. Fish Dis., 17, 349-354(1994). https://doi.org/10.1111/j.1365-2761.1994.tb00230.x
  20. Suzuki, T., Nakai, K., Yoshie, Y., Shirai, T. and Hirano, T., "Digestibility of Dietary Fiber in Brown Alga, Kombu, by Rats," Nippon Suisan Gakkaishi, 59, 879-884(1993). https://doi.org/10.2331/suisan.59.879
  21. Hidaka, H., Eida, T., Takizawa, T., Tokuzawa, T. and Tashiro, Y., "Effect of Fructooligosaccharide on Intestinal Flora and Human Health," Bifido. Microbiol., 5, 37-50(1986).
  22. Dubois, "Colorimetric Method for Determination of Sugars and Related Substances," Analysis Chem. 28, 350(1956). https://doi.org/10.1021/ac60111a017
  23. Bae, J. S., Lee, J. S., Kim, Y. S., Sim, W. J., Lee, H., Chun, J. Y. and Park, K. P., "Depolymerization of Fucoidan by Contact Glow Discharge Electrolysis(CGDE)," Korean Chem. Eng. Res. (HWAHAK KONGHAK), 46(5), 886-891(2008).
  24. Lee, G. D., Kim, J. O., Kim, M. S. and Lee, K. P., "The Prediction of Self-life on Functional Beverage," Korean J. Food Preserv., 13(2), 154-160(2006).

Cited by

  1. Lipopolysaccharide로 유도된 RAW 264.7 세포에서 다시마 뿌리 에탄올 추출물의 항염증 효과 vol.46, pp.6, 2014, https://doi.org/10.9721/kjfst.2014.46.6.729