DOI QR코드

DOI QR Code

Dye-Sensitized Solar Cell Based on TiO2-Graphene Composite Electrodes

TiO2와 Graphene 혼합물을 전극으로 사용한 염료감응형 태양전지특성 연구

  • Battumur, T. (Division of Chemical Engineering, Chonbuk National University) ;
  • Yang, Wooseung (Division of Chemical Engineering, Chonbuk National University) ;
  • Ambade, S.B. (Division of Chemical Engineering, Chonbuk National University) ;
  • Lee, Soo-Hyoung (Division of Chemical Engineering, Chonbuk National University)
  • Received : 2011.04.30
  • Accepted : 2011.07.19
  • Published : 2012.02.01

Abstract

Dye-sensitized solar cells(DSSCs) based on $TiO_2$ film photo anode incorporated with different amount of grapheme nanosheet(GNS) are fabricated and their photovoltaic performance are investigated. The $TiO_2$-GNS composite electrode has been prepared by a direct mixing method. The DSSC performance of this composite electrode was measured using N3 dye as a sensitizer. The performance of DSSCs using the $TiO_2$-GNS composite electrodes is dependent on the GNS loading in the electrodes. The results show that the DSSCs incorporating 0.01 wt% GNS in $TiO_2$photo anode demonstrates a maximum power conversion efficiency of 5.73%, 26% higher than that without GNS. The performance improvement is ascribed to increased N3 dye adsorption, the reduction of electron recombination and back transport reaction as well as enhancement of electron transport with the introduction of GNS. The presence of both $TiO_2$(anatase) and GNS has been confirmed by FieldEmission Scanning Electron Microscopy(FE-SEM). The decrease in recombination due to GNS in DSSCs has been investigated by the Electrochemical Impedance Spectroscopy.

본 연구에서는 $TiO_2$ 필름에 그라핀나노시트(graphenenanosheet, GNS)의 양을 다르게 함으로써 형성한 전극을 이용하여 염료감응형 태양전지를 제작하였고 그 특성을 연구하였다. $TiO_2$-GNS 혼합물 전극은 단순한 혼합방식에 의하여 제작되었으며, N3를 염료로 사용하여 태양전지의 효율을 평가하였다. $TiO_2$-GNS 혼합물 전극을 사용한 염료감응형 태양전지의 전환효율은 GNS의 양에 의해 영향을 받았으며, $TiO_2$에 GNS를 0.01 wt% 혼합한 전극을 사용하여 제작한 염료감응형 태양전지가 가장 높은 효율인 5.73%를 나타내었다. 이는 GNS를 혼합하지 않은 전극을 사용한 태양전지보다 26% 높은 효율이었다. 이와 같은 효율 증가의 원인으로는 GNS 첨가에 의한 N3의 흡착량 증가, 전자 재결합(electron recombination)과 back transport reaction의 감소, 전자 수송의 증가로부터 기인한 것으로 생각된다. 본 연구에서 $TiO_2$(anatase)와 GNS의 존재는 Field-Emission Scanning Electron Microscopy를 통하여 확인하였으며, 흡착된 염료의 양은 자외선분광기(UV-vis Spectroscopy), 전자 재결합의 감소 및 전자 수송에 대한 분석은 전기화학적 임피던스분광법(Electrochemical Impedance Spectroscopy)을 이용하였다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. O'Regan, B. and Gratzel, M., "A Low-cost, High-efficiency Solar Cell Based on Dye-sensitized Colloidal $TiO_2$ films," Nature, 353, 737(1991). https://doi.org/10.1038/353737a0
  2. Nazeeruddin, M. K., De Angelis, F., Fantacci, S., Selloni, A., Viscardi, G. and Grtzel, M., "Combined Experimental and DFTTDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers," J. Am. Chem. Soc., 127, 16835-16847(2005). https://doi.org/10.1021/ja052467l
  3. Chiba, Y., Islam, A., Watanabe, Y., Komiya, R., Koide, N. and Han, L., "Dye-Sensitized Solar Cells with Conversion Efficiency of 11.1%," Jpn. J. Appl. Phys., 45, L638(2006). https://doi.org/10.1143/JJAP.45.L638
  4. Kong, F. T., Dai, S. Y. and Wang, K. J., "Review of Recent Progress in Dye-Sensitized Solar Cells," Adv. Optoelectron., 1-13(2007).
  5. Kong, F. T. and Dai, S. Y., "Dye-Sensitized Solar Cells," Prog. Chem., 18, 1409-1424(2006).
  6. Kuang, D. B., Brillet, J., Chen, P., Takata,M., Uchida, S., Miura, H., Sumioka, K., Zakeeruddin, S. M. and Gratzel, M., "Application of Highly Ordered $TiO_2$ Nanotube Arrays in Flexible Dyesensitized Solar Cells," ACS. Nano, 2, 1113(2008). https://doi.org/10.1021/nn800174y
  7. Mor, G. K., Shankar, K., Paulose, M., Varghese, O. K. and Grimes, C. A., "Use of Highly-Ordered $TiO_2$ Nanotube Arrays in Dye- Sensitized Solar Cells," Nano. Lett., 6, 215(2006). https://doi.org/10.1021/nl052099j
  8. Grimes, C. A., "Synthesis and Application of Highly Ordered Arrays of $TiO_2$ Nanotubes," J. Mater. Chem., 17, 1451(2007). https://doi.org/10.1039/b701168g
  9. Zhu, K., Neale, N. R., Miedaner, A. and Frank, A. J., "Enhanced Charge-Collection Efficiencies and Light Scattering in Dye-Sen-sitized Solar Cells Using Oriented $TiO_2$ Nanotubes Arrays," Nano. Lett., 7, 69(2007). https://doi.org/10.1021/nl062000o
  10. Jennings, J. R., Ghicov, A., Peter, L. M., Schmuki, P. and Walker, A. B., "Dye-sensitized Solar Cells Based on Oriented $TiO_2$ Nanotube Arrays: Transport, Trapping, and Transfer of Electrons," J. Am. Chem. Soc., 130, 13364(2008). https://doi.org/10.1021/ja804852z
  11. Kongkanand, A., Martinez-Dominguez, R. and Kamat, P. V., "Single Wall Carbon Nanotube Scaffolds for Photoelectrochemical Solar Cells - Capture and Transport of Photogenerated Electrons," Nano. Letters, 7(3), 676-680(2007). https://doi.org/10.1021/nl0627238
  12. Brown, P., Takechi, K. and Kamat, P. V., "Single-Walled Carbon Nanotube Scaffolds for Dye - Sensitized Solar Cells," J. Phys. Chem. C., 112(12), 4776-4782(2008). https://doi.org/10.1021/jp7107472
  13. Yen, C. Y., Lin, Y. F., Liao, S. H., Weng, C. C., Huang, C. C., Hsiao, Y. H., Ma, C. C. M., Chang, M. C., Shao, H. and Tsai, M. C., "Preparation and Properties of a Carbon Nanotube-based Nanocompositephoto Anode for DSSCs," Nanotechnology, 19, 1-9(2008).
  14. Sui, Y. and Appenzeller, J., "Screening and Interlayer Coupling in Multi-layer Graphene Field-effect Transistors," Nano. Lett., 9, 2973(2009). https://doi.org/10.1021/nl901396g
  15. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V. and Firsov, A. A., "Electric Field Effect in AtomicallyThin Carbon Films," Science, 306, 666 (2004). https://doi.org/10.1126/science.1102896
  16. Cao, A., Liu, Z., Chu, S., Wu, M., Ye, Z., Cai, Z., Chang, Y., Wang, S., Gong, Q. and Liu, Y., "A Facile One-step Method to Produce Graphene-CdS Quantum Dot Nanocomposites as Promising Optoelectronic Materials," Adv. Mater., 22, 103(2010). https://doi.org/10.1002/adma.200901920
  17. Guo, S., Dong, S. and Wang, E., "Three-Dimensional Pt-on-Pd BimetallicNanodendritesSupported on GrapheneNanosheet: Facile Synthesis and Used asan Advanced Nanoelectrocatalyst for Methanol Oxidation," ACS Nano, 4(1), 547(2010). https://doi.org/10.1021/nn9014483
  18. Chen, S., Zhu, J., Wu, X., Han, Q. and Wang, X., "Graphene Oxide $MnO_2$ Nanocomposites for Supercapacitors," ACS Nano, 4(5), 2822(2010). https://doi.org/10.1021/nn901311t
  19. Zhou, X., Wu, T., Hu, B., Yang, G. and Han, B., "Synthesis of Graphene/polyaniline Composite Nanosheets Mediated by Polymerized Ionic Liquid," Chem. Commun., 46(21), 3663(2010). https://doi.org/10.1039/c0cc00049c
  20. Gu, D. E., Lu, Y., Yang, B. C. and Hu, Y. D., "Facile Preparation of Micro-mesoporous Carbon-doped $TiO_2$ Photocatalysts with aNatase Crystalline Walls Undertemplate-freecondition," Chem. Commun., 18, 2435(2008).
  21. Woan, K., Pyrgiotakis, G. and Sigmund, W., "Photocatalytic Carbon- Nanotube-$TiO_2$ Composites," Adv. Mater., 21(21), 2233 (2009). https://doi.org/10.1002/adma.200802738
  22. Zhang, H., Lu, X. J., Li, Y. M., Wang, Y. and Li, J. H., "P25- Graphene Composite as a High Performance Photocatalyst," ACS Nano, 4(1), 380(2010). https://doi.org/10.1021/nn901221k
  23. Gao, L., Liu, Y. and Sun, S., "Enhanced Dye-sensitized Solar Cell Using Graphene-$TiO_2$ Photoanodeprepared by Heterogeneous Coagulation," Applied Physics Letters, 96, 083113(2010). https://doi.org/10.1063/1.3318466
  24. Hummers, W. S. and Offeman, R. E., "Preparation of Graphitic Oxide," J. Am. Chem. Soc., 80, 1339(1958). https://doi.org/10.1021/ja01539a017
  25. Li, D., Muller, M. B., Gilje, S., Kane, R. B. R. and Wallace, G. G., "High-throughput Solution Processing of Large-scale Graphene," Nat. Nanotechnol., 4, 25(2009). https://doi.org/10.1038/nnano.2008.329
  26. Dong, X., Su, C. Y., Zhang, W., Zhao, J., Ling, Q., Huang, W., Chen, P. and L. J., "Ultra-large Single-layer Graphene Obtained from Solution Chemical Reduction and Its Electrical Properties," Phys. Chem. Chem. Phys., 12, 2164(2010). https://doi.org/10.1039/b914546j
  27. Yang, N., Zhai, J., Wang, D., Chen, Y. and Jiang, L., "Two-Dimensional Graphene Bridges Enhanced Photoinduced Charge Transport in Dye-Sensitized Solar Cells," ACS Nano, 4(2), 887 (2010). https://doi.org/10.1021/nn901660v
  28. Zhang, H., Lv, X., Li, Y., Wang, Y. and Li, J., "P25-Graphene Composite as a High Performance Photocatalyst," ACS Nano, 4(1), 380(2010). https://doi.org/10.1021/nn901221k
  29. He, B. L., Dong, B. and Li, H. L., "Preparation and Electrochemical Properties of Ag-modified $TiO_2$ Nanotube Anode Material for Lithium-ion Battery," Electrochem. Commun., 9(3), 425(2007). https://doi.org/10.1016/j.elecom.2006.10.008

Cited by

  1. Granules Through Chemical Interconnection of Nanoparticles by Adding TEOT to Spray Solution vol.53, pp.5, 2015, https://doi.org/10.9713/kcer.2015.53.5.632