DOI QR코드

DOI QR Code

고분자전해질 연료전지에서 TiN과 Ti/TiN이 코팅된 스텐레스 강 분리판의 부식 특성

Analysis of Corrosion Characteristics for TiN- and Ti/TiN-coated Stainless Steel Bipolar Plate in PEMFC

  • 한춘수 (군산대학교 나노화학공학과) ;
  • 채길병 (전북대학교 신소재공학부) ;
  • 이창래 (재료연구소 융합공정연구본부) ;
  • 최대규 (전북대학교 신소재공학부) ;
  • 심중표 (군산대학교 나노화학공학과)
  • Han, Choonsoo (Department of Nano & Chemical Engineering, Kunsan National University) ;
  • Chae, Gil-Byung (School of New Material Science, Chonbuk National University) ;
  • Lee, Chang-Rae (Materials Processing Division, Korea Institute of Materials Science) ;
  • Choi, Dae-Kyu (School of New Material Science, Chonbuk National University) ;
  • Shim, Joongpyo (Department of Nano & Chemical Engineering, Kunsan National University)
  • 투고 : 2011.04.28
  • 심사 : 2011.07.07
  • 발행 : 2012.02.01

초록

고분자전해질 연료전지용 분리판 소재로 스텐레스 강의 내식성과 전기전도성을 향상시키기 위해 표면을 TiN(titanium nitride) 또는 Ti/TiN(titanium/titanium nitride)으로 코팅하여 연료전지 운전환경에서 표면 코팅층의 물성 변화를 조사하였다. 200시간의 연료전지 운전에서 표면 코팅층의 부식, 균열(crack), 박리, 표면 화학조성 변화 등을 분석하여 코팅된 TiN 또는 Ti/TiN 박막의 역할을 규명하고자 하였다. 스텐레스 강 분리판의 전기전도도와 부식저항성은 소재 표면에 질화층 박막을 코팅함으로써 증가하였으나 연료전지 환경하에서 운전시 코팅된 박막의 부식과 박리현상이 SUS316L-Ti/TiN을 제외하고 현저히 발생하였다. TiN 코팅층과 하부 기재 사이에 Ti 중간층을 도입함으로써 TiN 박막의 밀착성이 향상되고 또한 코팅층의 두께 증가로 부식 위험성이 감소하는 것을 관찰하였다.

TiN or Ti/TiN was coated on stainless steel as bipolar plate in polymer electrolyte membrane fuel cells (PEMFCs) to improve their corrosion resistance and electric conductivity, and their properties were examined under fuel cell operating condition. After 200 hours operation, the behaviors for the corrosion, crack and dissolution of coating layer were investigated by various techniques. The corrosion and exfoliation of coating layer were considerably generated except for SUS316L-Ti/TiN after fuel cell operation even if the electric conductivity and corrosion resistance of coated stainless steel bipolar plates were improved. The adoption of Ti layer between TiN layer and the surface of stainless steel enhanced the adhesion of TiN layer and decreased the possibility of corrosion by the increase of coating layer.

키워드

참고문헌

  1. "Fuel Cell Handbook," EG&G Technical Services, U.S. Department of Energy, 7th ed. 3-5, 2004.
  2. Cho, E. A. and Oh, I.-H., "Current R&D Issues on bIpolar Plates of PEMFC," Polymer Sci. Tech, 15(5), 612-617(2004). https://doi.org/10.1002/pat.514
  3. Besmann, T.M., Klett, J.W., Henry, J.J. and Lara-Curzio, E., "Carbon/Carbon Composite Bipolar Plate for Proton Exchange Membrane Fuel Cells," J. Electrochem. Soc, 147(11), 4083-4086 (2000). https://doi.org/10.1149/1.1394023
  4. Cho, E. A., Jeon, U. S., Ha, H. Y., Hong, S. A. and Oh, I. H., "Characteristics of Composite Bipolar Plates for Polymer Electrolyte Membrane Fuel Cells," J. Power Sources, 125(2), 178-182(2004). https://doi.org/10.1016/j.jpowsour.2003.08.039
  5. Heinzel, A., Mahlendorf, F., Niemzig, O. and Kreuz, C., "Injection Moulded Low Cost Bipolar Plates for PEM Fuel Cells," J. Power Sources, 131(1), 35-40(2004). https://doi.org/10.1016/j.jpowsour.2004.01.014
  6. Cooper, J. S., "Design Analysis of PEMFC Bipolar Plates Considering Stack Manufacturing and Environment Impact," J. Power Sources, 129(2), 152-169(2004). https://doi.org/10.1016/j.jpowsour.2003.11.037
  7. Nam, D. G., "Trend and Case for the Develpoment of PEM Fuel Cell Metallic Separator," J. Kor. Soc. Marine. Eng, 33(9), 1095-1099(2009). https://doi.org/10.5916/jkosme.2009.33.8.1095
  8. Hermann, A., Chaudhuri, T. and Spagnol, P., "Review of Bipolar Plates in PEM Fuel Cells: Flow-Field Designs," Int. J. Hydrogen Energy, 30(4), 359-371(2005). https://doi.org/10.1016/j.ijhydene.2004.09.019
  9. Lee, C. R., Yang, C., Moon, S. and Jeong, Y., "Application of the Surface Treatment for the Metal Separator in Fuel Cells," Proc. Kor. Ins. Surf. Eng., A-12(2007).
  10. Whang, K. W. and Seo, Y. W., "Characteristics of Hollow Cathode Discharge Plasma and Its Application for the Reactive Ion Plating of TiN and TiC," J. Vac. Sci. Technol. A11(4), 1496-1500 (1993). https://doi.org/10.1116/1.578691
  11. Ai, C. F., Wu, J. Y. and Lee, C. S., "A Study of HCD ion Plated Titanium Nitride Films," Vacuum, 44(2), 99-104(1993). https://doi.org/10.1016/0042-207X(93)90356-F
  12. Lee, J.-J., Kim, I.-T., Zhang, Y., Lee, H.-K. and Shim, J., "Comparison of Cell Performance with Physical Properties of Gas Diffusion Layers in PEMFCs," J. Kor. Electrochem. Soc, 10(4), 270-278(2007). https://doi.org/10.5229/JKES.2007.10.4.270
  13. Brady, M. P., Weisbrod, K., Paulasuskas, I., Buchanan, R. A., More, K. L., Wang, H., Wilson, M., Garzon, F. and Walker, L. R., "Preferential Thermal Nitridation to form Pin-hole Free Crnitrides to Protect Proton Exchange Membrane Fuel Cell Metallic Bipolar Plates," Script Materialia, 50(7), 1017-1022(2004). https://doi.org/10.1016/j.scriptamat.2003.12.028
  14. Oh, I.-H. and Lee, J.-B., "Corrosion Behaviors of 316L Stainless Steel Bipolar Plate of PEMFC and Measurement of Interfacial Contact Resistance Between Gass Diffusion Layer and Bipolar Plate," Corr. Sci. Tech., 9(3), 129-136(2010).
  15. Davies, D. P., Adcock, P. L., Turpin, M. and Rowen, S. J., "Bipolar Plate Materials for Solid Polymer Fuel Cells," J. Appl. Electrochem., 30(1), 101-105(2000). https://doi.org/10.1023/A:1003831406406
  16. Zhang, S., Yuan, X.-Z., Hin, J. N. C., Wang, H., Friedrich, K. A. and Schulze, M., "A Review of Platinum-based Catalyst Layer Degradation in Proton Exchange Membrane Fuel Cells," J. Power Sources, 194(2), 588-600(2009). https://doi.org/10.1016/j.jpowsour.2009.06.073
  17. Kim, L., Chung, C. G., Sung, Y. W. and Chung, J. S., "Dissolution and Migration of Platinum After Long-term Operation of a Polymer Electrolyte Fuel Cell Under Various Conditions," J. Power Sources, 183(2), 524-532(2008). https://doi.org/10.1016/j.jpowsour.2008.05.062
  18. Wu, J., Yuan, X. Z., Martin, J. J., Wang, H., Zhang, J., Shen, J., Wu, S. and Merida, W., "A Review of PEM Fuel Cell Durability: Degradation Mechanism and Mitigation Strategies," J. Power Sources, 184(1), 104-119(2008). https://doi.org/10.1016/j.jpowsour.2008.06.006
  19. Kelly, M. J., Fafilek, G., Besenhard, J. O., Kronberger, H. and Nauer, G., "Contaminant Absorption and Conductivity in Polymer Electrolyte Membranes," J. Power Sources, 145(2), 249-252(2005). https://doi.org/10.1016/j.jpowsour.2005.01.064
  20. Antunes, R. A., Oliveira, M. C. L., Ett, G. and Ett, V., "Corrosion of Metal Bipolar Plates for PEM Fuel Cells: A Review," Int. J. Hydro. Energy, 35(8), 3632-3647(2010). https://doi.org/10.1016/j.ijhydene.2010.01.059
  21. Chung, C.-Y., Chen, S.-K., Chiu, P. J., Chang, M.-H., Hung, T.-T. and Ko, T.-H., "Carbon Film-coated 304 Stainless Steel as PEMFC Bipolar Plate," J. Power Sources, 176(1), 276-281(2008). https://doi.org/10.1016/j.jpowsour.2007.10.022
  22. Cho, E. A., Jeon, U. S., Hong, S. A., Oh, I. H. and Kang, S. G., "Performance of a 1 kW-class PEMFC Stack Using TiN-coated 316 Stainless Steel Bipolar Plates," J. Power Sources, 142(1-2), 177-183(2005). https://doi.org/10.1016/j.jpowsour.2004.10.032
  23. Yi, P., Peng, L., Feng, L., Gan, P. and Lai, X., "Performance of a Proton Exchange Membrane Fuel Cell Stack Using Conductive Amorphous Carbon-coated 304 Stainless Steel Bipolar Plates," J. Power Sources, 195(20), 7061-7066(2010). https://doi.org/10.1016/j.jpowsour.2010.05.019
  24. The European Stainless Steel Development Association, EN 10088, June 2005.
  25. "Titanium," Wikipedia, Wikimedia Foundation Inc.
  26. Pierson, H. O., "Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing, and Applications," William Andrew. p.193(1996).
  27. Luo, Z., Li, D., Tang, H., Pan, M. and Ruan, R., "Degradation Behavior of Membrane-electrode-assembly Materials in 10-cell PEMFC Stack," Int. J. Hydro. Energy, 31(13), 1831-1837(2006). https://doi.org/10.1016/j.ijhydene.2006.02.029
  28. Mitsushima, S., Kawahara, S., Ota, K. and Kamiya, N., "Consumption Rate of Pt under Potential Cycling," J. Electrochem. Soc. 154(2), B153-B158(2007). https://doi.org/10.1149/1.2400596
  29. Xie, J., Wood, D. L., Wayne, D. M., Zawodzinski, T. A., Atanassov, P. and Borup, R. L., "Durability of PEFCs at High Humidity Conditions," J. Electrochem. Soc. 152(1), A104-A113(2005). https://doi.org/10.1149/1.1830355
  30. Akita, T., Taniguchi, A., Maekawa, J., Siroma, Z., Tanaka, K., Kohyama, M. and Yasuda, K., "Analytical TEM Study of Pt Particle Deposition in the Proton-exchange Membrane of a Membrane- electrode-assembly," J. Power Sources, 159(1), 461-467(2006). https://doi.org/10.1016/j.jpowsour.2005.10.111
  31. Wang, H. and Turner, J. A., "Ferritic Stainless Steels as Bipolar Plate Material for Polymer Electrolyte Membrane Fuel Cells," J. Power Sources, 128(2), 193-200(2004). https://doi.org/10.1016/j.jpowsour.2003.09.075
  32. Wang, H., Seikart, M. A. and Turner, J. A., "Stainless Steel as Bipolar Plate Material for Polymer Electrolyte Membrane Fuel Cells," J. Power Sources, 115(2), 243-251(2003). https://doi.org/10.1016/S0378-7753(03)00023-5
  33. Li, M., Luo, S., Zeng, C., Shen, J., Lin, H. and Cao, C., "Corrosion Behavior of TiN Coated Type 316 Stainless Steel in Simulated PEMFC Environments," Corr. Sci. 46(6), 1369-1380(2004). https://doi.org/10.1016/S0010-938X(03)00187-2

피인용 문헌

  1. DC 스퍼터법과 유도결합 플라즈마 마그네트론 스퍼터법으로 증착된 수퍼하드 TiN 코팅막의 물성 비교연구 vol.46, pp.2, 2012, https://doi.org/10.5695/jkise.2013.46.2.055