DOI QR코드

DOI QR Code

Modeling and Measurements of the Activity Coefficients and Solubilities of Amino Acids in the L-valine/electrolyte and L-proline/electrolyte Aqueous Solutions

L-Valine/전해질 및 L-Proline/전해질 수용액에서 아미노산의 활동도계수와 용해도의 측정 및 모델링

  • Lee, Bong-Seop (Department of Chemical Engineering, Kangwon National University) ;
  • Kim, Ki-Chang (Department of Chemical Engineering, Kangwon National University)
  • 이봉섭 (강원대학교 화학공학과) ;
  • 김기창 (강원대학교 화학공학과)
  • Received : 2011.09.05
  • Accepted : 2011.09.23
  • Published : 2012.02.01

Abstract

Activity coefficients and solubilities of L-Valine and L-Proline in aqueous solutions containing each of four electrolytes such as NaCl, KCl, $NaNO_3$ and $KNO_3$ were measured at 298.15 K. The measurements of activity coefficients were carried out in the electrochemical cell coupled with two ion-selective electrodes (cation and anion), and the solubilities were measured by the gravimetric analysis of saturated solutions in equilibrium with the solid phase of amino acid. The measured activity coefficients of electrolytes and amino acids were correlated with the theoretical thermodynamic model presented in the previous work [Korean Chem. Eng. Res. 48(4), 519(2010)]. It was found that the activity coefficients of amino acids and electrolytes described based on the our previous model were well agreeable with experimental data. Also the experimental solubility data of L-Valine and L-Proline were successfully correlated with the thermodynamic relation mentioned in the previous work.

본 연구에서는 무기염인 NaCl, KCl, $NaNO_3$$KNO_3$의 각 전해질과 L형 아미노산인 L-Valine 및 L-Proline이 용해된 아미노산/전해질 수용액에서 L-Valine 및 L-Proline의 활동도계수와 용해도를 298.15 K에서 측정하였다. 아미노산의 활동도계수는 양이온 및 음이온의 선택성 전극간의 기전력을 측정하는 전기화학 법으로 측정하였으며, 용해도는 아미노산의 고체상과 상평형을 이루고 있는 포화용액을 중량 분석하여 측정하였다. 실험적으로 측정된 전해질 및 아미노산의 활동도계수 값을 본 연구의 저자들이 수행한 지난번 연구[Korean Chem. Eng. Res. 48(4), 519(2010)]의 이론적 모델로 검토하였다. 실험을 수행한 8개의 아미노산/전해질 수용액에서 측정된 전해질 및 아미노산의 활동도계수 값은 지난번 연구의 이론적 모델에 잘 적용되는 경향을 보였으며, 또한 측정된 아미노산의 용해도 데이터도 지난번 연구의 이론적 관계로 잘 묘사될 수 있었다.

Keywords

References

  1. Subramanian, Ganapathy, Bioseparations. and bioprocessing vol. 1, Wiley-VCH Verlag GmbH & Co., Weinheim(2007).
  2. Ladish, M. R., Bioseparations engineering : Principles, Practice and Economics, Wiley-Interscience, New York(2001).
  3. Chen, C.-C., Zhu, Y. and Evans, L. B., "Phase Partitioning of Biomolecules: Solubilities of Amino Acids," Biotechnol. Prog., 5(3), 111-118(1989). https://doi.org/10.1002/btpr.5420050309
  4. Khoshkbarchi, M. K. and Vera, J. H., "Measurement and Modeling of Activities of Amino Acids in Aqueous Salt Systems," AIChE J., 42(8), 2354-2364(1996). https://doi.org/10.1002/aic.690420824
  5. Khoshkbarchi, M. K. and Vera, J. H., "A Perturbed Hard-sphere Model with Mean Spherical Approximation for the Activity Coefficients of Amino Acids in Aqueous Electrolyte Solutions," Ind. Eng. Chem. Res., 35(12), 4755-4766(1996). https://doi.org/10.1021/ie960284p
  6. Pazuki, G. R., Rohani, A. A. and Dashtizadeh, A., "Correlation of the Mean Ionic Activity Coefficients of Electrolytes in Aqueous Amino Acid and Peptide Systems," Fluid Phase Equilibria, 231, 171-175(2005). https://doi.org/10.1016/j.fluid.2005.02.003
  7. Sadeghi, R., "Modification of the NRTL and Wilson Models for the Representation of Phase Equilibrium Behavior of Aqueous Amino Acid-electrolyte Solutions," Can. J. Chem., 86, 1126-1137 (2008). https://doi.org/10.1139/v08-166
  8. Lee, B.-S. and Kim, K.-C., "Measurements and Modeling of the Activity Coefficients and Solubilities of L-alanine in Aqueous Electrolyte Solutions," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 48(4), 519-533 (2010).
  9. Khoshkbarchi, M. K. and Vera, J. H., "Measurement of Activity Coefficients of Amino Acids in Aqueous Electrolyte Solutions: Experimental Data of the Systems $H_2O$+NaCl+Glycine and $H_2O$+NaCl+DL-Alanine at $25^{\circ}C$," Ind. Eng. Chem. Res., 35, 2735-2742(1996). https://doi.org/10.1021/ie950581e
  10. Chung, Y.-M. and Vera, J. H., "Activity of the Electrolyte and the Amino Acid in the Systems Water+DL-a-aminobutyric acid+ NaCl, +NaBr, +KCl, and +KBr at 298.2 K," Fluid Phase Equilibria, 203, 99-110(2002). https://doi.org/10.1016/S0378-3812(02)00183-8
  11. Cohn, E. J. and Edsall, J. T., Proteins, amino acids and peptides as ions and dipolar ions, Reinhold Publishing Corp., New York (1950).
  12. Khoshkbarchi, M. K., Soto-Campos, Ana, M. and Vera, J. H., "Interactions of DL-serine and L-serine with NaCl and KCl in Aqueous Solutions," J. Solution Chem., 26(10), 941-955(1997). https://doi.org/10.1007/BF02768052
  13. Soto-Campos, Ana, M., Khoshkbarchi, M. K. and Vera, J. H., "Interactions of DL-threonine with NaCl and $NaNO_3$ in Aqueous Solutions: e.m.f. Measurements with Ion-selective Electrodes," J. Chem. Thermodyn., 29, 609-622(1997). https://doi.org/10.1006/jcht.1996.0182
  14. Soto-Campos, Ana, M., Khoshkbarchi, M. K. and Vera, J. H., "Activity Coefficients of the Electrolyte and Amino Acid in water +N$NaNO_3$+glycine and water+NaCl+DL-methionine," Biophysical Chem., 67, 97-105(1997). https://doi.org/10.1016/S0301-4622(97)00021-5
  15. Kamali-Ardakani, M., Modarress, H., Taghikhani, V. and Khoshkbarchi, M. K., "Activity Coefficients of Glycine In Aqueous Electrolyte Solutions: Experimenta Data for (H$H_2O$+KCl+glycine) at T= 298.15 K and (H$H_2O$+NaCl+glycine) at T=308.15 K," J. Chem. Thermodyn., 33, 821-836(2001). https://doi.org/10.1006/jcht.2000.0795
  16. Harris, E. L. V. and Angal, S., Protein purification methods: A practical approach, Oxford University Press, NY(1989).
  17. Khoshkbarchi, M. K. and Vera, J. H., "Effect of NaCl and KCl on the Solubility of Amino Acids in Aqeous Solutions at 298.2 K: Measurements and Modeling," Ind. Eng. Chem. Res., 36, 2445-2451(1997). https://doi.org/10.1021/ie9606395
  18. Lee, S. H. and Rasaiah, J. C., "Molecular Dynamics Simulation of ion Mobility 2. Alkali Metal and Halide Ions Using the SPC/ E Model for Water at $25^{\circ}C$," J. Phys. Chem., 100, 1420-1425 (1996). https://doi.org/10.1021/jp953050c
  19. Lu, G.-W., Li, C.-X., Wang, W.-C. and Wang, Z.-H., "Structure of $KNO_3$ Ekectrolyte Solutions: a Monte Carlo study," Fluid Phase Equilibria, 225, 1-11(2004).
  20. Soto, A., Khoshkbarchi, M. K. and Ver, J. H., "Effect of the Cation and the Anion of an Electrolyte on the Solubility of DL-aminobutyric Acid in Aqueous Solutions: Measurement and Modeling," Biophys. Chem., 73, 77-83(1998). https://doi.org/10.1016/S0301-4622(98)00139-2
  21. Pradhan, A. A. and Vera, J. H., "Effect of Anions on the Solubility of Zwitterionic Amino Acids," J. Chem. Eng. Data, 45, 140-143(2000). https://doi.org/10.1021/je9902342
  22. Shuler, M. L. and Kargi, F., Bioprocess Engineering, Basic concepts, international series in the physical and chemical engineering sciences, Prentice-Hall, NY(2002).
  23. Gross, J. and Sadowski, G., "Perturbed-chain SAFT: An Equation of State Based on a Perturbed Theory for Chain Molecules," Ind. Eng. Chem. Res., 40(4), 1244-1260(2001). https://doi.org/10.1021/ie0003887
  24. Chapman, W. G., Gubbins, K. E., Jackson, G. and Radosz, M., "New Reference Equation of State for Associating Liquids," Ind. Eng. Chem. Res., 29(8), 1709-1721(1990). https://doi.org/10.1021/ie00104a021
  25. Huang, S. and Radosz, M., "Equation of State for Small, Large, Polydisperse, and Associating Molecules," Ind. Eng. Chem. Res., 29(11), 2284-2294(1990). https://doi.org/10.1021/ie00107a014
  26. Lee, B.-S. and Kim, K.-C., "Modeling of Aqueous Electrolyte Solutions Based on Perturbed-chain Statistical Associating Fluid Theory Incorporated with Primitive Mean Spherical Approximation," Korean J. Chem. Eng., 26(6), 1733-1747(2009). https://doi.org/10.2478/s11814-009-0286-4
  27. Lee, B.-S. and Kim, K.-C., "Study on the Activity Coefficients and Solubilities of Amino Acids in Aqueous Solutions with Perturbed- chain Statistical Associating Fluid Theory," Korean J. Chem. Eng., 27(1), 267-277(2010). https://doi.org/10.2478/s11814-009-0351-z
  28. Givand, J. C., Teja, A. S. and Rousseau, R. W., "Effect of Relative Solubility on Amino Acid Crystal Purity," AICHE J., 47(2), 2705-2712(2001). https://doi.org/10.1002/aic.690471210
  29. Fasman, G. D., CRC Handbook of Biochemistry and molecular biology physical and chemical data, vol. 1, CRC press, Florida (1976).
  30. Hamer, W. J. and Wu, Y.-C., "Osmotic Coefficients and Mean Activity Coefficients of Uni-univalent Electrolytes," J. Phys. Chem. Ref. Data, 1(4), 1047-1099(1972). https://doi.org/10.1063/1.3253108

Cited by

  1. )-Aminobutanedioic Acid Magnesium Salt Solutions at 298.15 and 310.15 K vol.61, pp.9, 2016, https://doi.org/10.1021/acs.jced.6b00295
  2. Solvation thermodynamics of L-cystine, L-tyrosine, and L-leucine in aqueous-electrolyte media vol.91, pp.12, 2017, https://doi.org/10.1134/S0036024417120263
  3. Solubility analysis of homologous series of amino acids and solvation energetics in aqueous potassium sulfate solution vol.5, pp.8, 2012, https://doi.org/10.1016/j.heliyon.2019.e02304