DOI QR코드

DOI QR Code

Energy Conservation and Exergy Comparison of a Fully Thermally Coupled Distillation Column

열복합 증류탑의 에너지 절감과 엑서지 비교

  • 김병철 (동아대학교 화학공학과) ;
  • 김영한 (동아대학교 화학공학과)
  • Received : 2011.04.20
  • Accepted : 2011.05.31
  • Published : 2012.02.01

Abstract

The energy conservation and exergy loss of a fully thermally coupled distillation commercialized as the divided wall column are compared with those of a conventional two-column system for ternary separation. The used example for the comparison is the benzene-toluene-m-xylene separation process widely used in a petrochemical plant. The design procedure of the fully thermally coupled distillation column is explained, and the energy requirement is compared using the HYSYS. When the same numbers of trays are utilized, the fully thermally coupled distillation column uses 28.2% less energy and 10.4% more exergy loss. The increase of the exergy loss is due to the additional mixing from the bidirectional inter-linking and the temperature elevation in the reboiler from the increased pressure at the bottom of the main column.

분리벽형 증류탑으로 상용화된 열복합 증류 시스템의 에너지 절약효과와 엑서지 손실을 기존의 3성분 분리 시스템인 2 탑 증류탑의 에너지 사용량 및 엑서지 손실과 비교하였다. 비교에 사용한 예제공정으로 석유화학 공장에서 보편적으로 사용하는 벤젠-톨루엔-m-자일렌 분리 공정을 대상으로 하였다. 본 연구에서는 열복합 증류탑의 설계방법을 제시하고 HYSYS를 이용하여 계산된 에너지 사용량을 비교하였다. 동일한 증류단수를 사용하였을 때 열복합 증류 시스템이 에너지 사용량을 28.2% 절감할 수 있음을 알았으며, 엑서지 손실은 10.4% 더 많았다. 엑서지 손실의 증가는 열복합 증류탑의 양방향 연결 흐름에 의한 증류단 내에서의 추가적인 혼합과 주탑 하부에서의 압력상승에 의한 재비기에서의 온도 상승이 주요 원인이다.

Keywords

Acknowledgement

Supported by : 동아대학교

References

  1. Triantafyllou, C. and Smith, R., "The Design and Optimisation of Fully Thermally Coupled Distillation Columns," Chem. Eng. Res. Des., 70, 118-132(1992).
  2. Wolff, E. A. and Skogestad, S., "Operation of Integrated Three- Product (Petlyuk) Distillation Columns," Ind. Eng. Chem. Res., 34(6), 2094-2103(1995). https://doi.org/10.1021/ie00045a018
  3. Shah, P. B., "Squeeze More Out of Complex Columns," Chem. Eng. Prog., 98(7), 46-55(2002).
  4. Rosjorde, A. and Kjelstrup, S., "The Second Law Optimal State of a Diabatic Binary Tray Distillation Column," Chem. Eng. Sci. 60, 1199-1210(2005). https://doi.org/10.1016/j.ces.2004.09.059
  5. Nakaiwa, M., Huang, K., Endo, A., Ohmori, T., Akiya, T. and Takamatsu, T., "Internally Heat-Integrated Distillation Columns: A Review," Chem. Eng. Res. Des., 81, 162-177(2003). https://doi.org/10.1205/026387603321158320
  6. Kataoka, K., Noda, H., Yamaji, H., Mukaida, T. and Kaneda, M., "A Compressor-Free HIDIC System for Recovery of Waste Solvent Mixtures," the 8th World Congress of Chemical Engineering, Aug., Montreal, Canada(2009).
  7. Kim, Y. H., "Internally and Partially Heat-Integrated Distillation System for Ternary Separation," Ind. Eng. Chem. Res., 50, (2011). in press
  8. Kim, Y. H., "Internally Heat-Integrated Distillation System for Quaternary Separation," Chem. Eng. Res. Des., 89, (2011). in press
  9. Kim, Y. H., "Structural Design and Operation of a Fully Thermally Coupled Distillation Column," Chem. Eng. J., 85, 289-301 (2002). https://doi.org/10.1016/S1385-8947(01)00170-X
  10. Kim, Y. H., "Structural Design of Fully Thermally Coupled Distillation Columns Using a Semi-Rigorous Model," Comp. Chem. Eng., 29, 1555-1559(2005). https://doi.org/10.1016/j.compchemeng.2004.12.004
  11. Widagdo, S. and Seider, W. D., "Azeotropic Distillation," AIChE J., 42, 96-130(1996). https://doi.org/10.1002/aic.690420110
  12. Kim, Y. H., "A New Fully Thermally Coupled Distillation Column with Postfractionator," Chem. Eng. Process. 45, 254-263(2006). https://doi.org/10.1016/j.cep.2005.03.013
  13. Kencse, H. and Mizsey, P., "Methodology for the Design and Evaluation of Distillation Systems: Exergy Analysis, Economic Features and GHG Emissions," AIChE J., 56(7), 1776-1786(2010).
  14. King, C. J., Separation Processes, 2nd ed., McGraw-Hill, New York, NY(1980).
  15. Lee, J. Y., Kim, Y. H. and Hwang, K. S., "Application of a Fully Thermally Coupled Distillation Column for Fractionation Process in Naphtha Reforming Plant," Chem. Eng. Process., 43, 495-501 (2004). https://doi.org/10.1016/j.cep.2003.02.001
  16. Goff, P. L., Cachot, T. and Rivero, R., "Exergy Anaysis of Distillation Processes," Chem. Eng. Technol., 19, 478-485(1996). https://doi.org/10.1002/ceat.270190603
  17. Suphanit, B., Bischert, A. and Narataruksa, P., "Exergy Loss Analysis of Heat Transfer across the Wall of the Dividing-Wall Distillation Column," Energy, 32, 2121-2134(2007). https://doi.org/10.1016/j.energy.2007.04.006
  18. Mustapha, D., Sabria, T. and Fatima, O., "Distillation of a Complex Mixture. Part II: Performance Analysis of a Distillation Column Using Exergy," Entropy, 9, 137-151(2007). https://doi.org/10.3390/e9030137
  19. Rivero, R., Garcia, M. and Urquiza, J., "Simulation, Exergy Analysis and Application of Diabatic Distillation to a Tertiary Amyl Methyl Ether Production Unit of a Crude Oil Refinery," Energy, 29, 467-489(2004). https://doi.org/10.1016/j.energy.2003.10.007

Cited by

  1. Design and control of energy-efficient distillation columns vol.33, pp.9, 2016, https://doi.org/10.1007/s11814-016-0124-4