DOI QR코드

DOI QR Code

A Hierarchical Underwater Acoustic Sensor Network Architecture Utilizing AUVs' Optimal Trajectory Movements

수중 무인기의 최적 궤도 이동을 활용하는 계층적 수중 음향 센서 네트워크 구조

  • 웬티탐 (울산대학교 전기컴퓨터공학과) ;
  • 윤석훈 (울산대학교 전기컴퓨터공학과)
  • Received : 2012.09.24
  • Accepted : 2012.11.28
  • Published : 2012.12.28

Abstract

Compared to terrestrial RF communications, underwater acoustic communications have several limitations such as limited bandwidth, high level of fading effects, and a large underwater propagation delay. In this paper, in order to tackle those limitations of underwater communications and to make it possible to form a large underwater monitoring systems, we propose a hierarchical underwater network architecture, which consists of underwater sensors, clusterheads, underwater/surface sink nodes, autonomous underwater vehicles (AUVs). In the proposed architecture, for the maximization of packet delivery ratio and the minimization of underwater sensor's energy consumption, a hybrid routing protocol is used. More specifically, cluster members use Tree based routing to transmit sensing data to clusterheads. AUVs on optimal trajectory movements collect the aggregated data from clusterhead and finally forward the data to the sink node. Also, in order to minimize the maximum travel distance of AUVs, an Integer Linear Programming based algorithm is employed. Performance analysis through simulations shows that the proposed architecture can achieve a higher data delivery ratio and lower energy consumption than existing routing schemes such as gradient based routing and geographical forwarding. Start after striking space key 2 times.

수중 음향통신 환경에서는 지상 RF 통신에 비하여 제한된 대역폭, 높은 페이딩효과, 높은 수중음파 전달지연과 같은 제약이 있다. 본 논문에서는 이러한 수중 음향통신의 제약을 극복하여 효과적인 대규모 수중감시시스템의 구축을 가능케 하는 계층적 네트워크 구조를 제안한다. 제안하는 네트워크구조는 수중센서, 클러스터헤드, 수중/해상 싱크 및 수중무인기를 포함하며, 패킷의 전송성공률을 최대화하고 센서노드의 전력소모를 최소화시키기 위하여 복수의 수중무인기를 이용한 하이브리드 형태의 데이터라우팅을 제공한다. 즉, 클러스터 내부에서 클러스터멤버들은 Tree구조기반 라우팅을 사용하여 클러스터헤드에게 데이터를 전송하며, 궤도 이동을 하는 수중무인기는 클러스터헤드로부터 병합된 센싱데이터를 수집하고 Store-carry-forward 방식으로 싱크노드에게 데이터를 전달한다. 수중무인기의 최장 궤도이동 시간을 최소화하기 위하여 Integer Linear Programming 기반의 알고리즘이 사용된다. 시뮬레이션을 이용한 성능분석을 통하여 제안하는 수중센서네트워크 구조가 기존의 Gradient 기반 라우팅과 Geographical Forwarding 방식에 비해 높은 전송성공율과 낮은 전력소모를 획득할 수 있음을 보인다.

Keywords

References

  1. J. Heidemann, W. Ye, J. Wills, A. Syed, and Y. Li, "Research challenges and applications for underwater sensor networking", in Proc. IEEE Wireless Commun. and Network. Conf. (WCNC'06), pp. 228-235, Apr. 2006.
  2. H. Lee and H. Choi, "The R&D trends of underwater sensor network for network-based underwater surveillance", in Proc. Symposium of KICS, pp. 311-312, Pyung-chang, South Korea, Feb. 2011.
  3. M. Grasmueck, G. P. Eberli, D. A. Viggiano, T. Correa, G. Rathwell, and J. Luo, "Autonomous Underwater Vehicle (AUV) mapping reveals coral mound distribution, morphology, and oceanography in deep water of the Straits of Florida", Geogr. Res. Lett., vol. 33, no. L23616, Dec. 2006
  4. E.O. Connell, W.B. Lyons, C. Sheridan, and E. Lewis, "Development of a fibre optic sensor for the detection of harmful algae bloom and in particular domoic acid", in Proc. IEEE Instrum. and Meas. Technol. Conf. (IMTC'07), pp. 1-4, Warsaw, Poland, May. 2007.
  5. A. Kavas, "Comparative analysis of WLAN, WiMAX and UMTS technologies", in Proc. PIER, pp. 150-157, Aug. 2007.
  6. S. Roy, T. M. Duman, V. McDonald, and J. G, Proakis, "High-rate communication for underwater acoustic channels using multiple transmitters and space time coding: Receiver structures and experimental results", IEEE J. Ocean. Eng., vol. 32, no. 03, pp. 663-688. Jul. 2007 https://doi.org/10.1109/JOE.2007.899275
  7. LinkQuest Inc, Underwater Modem Specifi cations, Jan. 2012. from http://www.link-quest.com/html/models1.htm
  8. J. Heidemann, M. Stojanovic, and M. Zorzi, "High bandwidth underwater optical communication", Appl. Opt., vol. 47, no. 02, pp. 277-283, Jan. 2008 https://doi.org/10.1364/AO.47.000277
  9. D. Pompili, T. Melodia, and I. F. Akyildiz, "A Distributed CDMA Medium Access Control for Underwater Acoustic Sensor Networks," In Proc. of Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net), Corfu, Greece, Jun. 2007.
  10. C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva, "Directed diffusion for wireless sensor networking," IEEE/ACM Trans. Network., vol. 11, no. 01, pp. 2-16, Feb. 2003. https://doi.org/10.1109/TNET.2002.808417
  11. G. G. Finn, "Routing and addressing problems in large metropolitan-scale internetwork," Tech. rep. ISVRR-87-180, Info. Sci. Inst. (ISI), Mar. 1987.
  12. H. Frey, "Scalable Geographic Routing Algorithms for Wireless Ad Hoc Networks," IEEE Network Mag.; vol. 18, no. 4, pp. 18-22, Jul.-Aug. 2004. https://doi.org/10.1109/MNET.2004.1316756
  13. D. R. Yoerger, M. Jakuba, A. M. Bradley, and B. Bingham, "Techniques for deep sea near bottom survey using an autonomous underwater vehicle," Int. J. Robot. Res., vol. 26, no. 01, pp. 41-54, Jan. 2007. https://doi.org/10.1177/0278364907073773
  14. D. A. Paley, F. Zhang, and N. E. Leonard, "Cooperative control for ocean sampling: The glider coordinated control system," IEEE Trans. Control Syst. Technol., vol. 16, no. 04, pp. 735-744, Jul. 2008. https://doi.org/10.1109/TCST.2007.912238
  15. S. Yoon, K. A. Azad, H. Oh, and S. Kim, "AURP: an AUV-Aided Underwater Routing Protocol for underwater acoustic sensor networks," Sensors, vol. 12, no. 2, pp. 1827-1845, Feb. 2012. https://doi.org/10.3390/s120201827
  16. C. E. Perkins and P. Bhagwat, "Highly dynamic destination-sequenced distance-vector routing (DSDV) for mobile computers," in Proc. ACM SIGCOMM, pp. 234-244, London, U.K., Sep. 1994.
  17. P. Jacquet, "Optimized link state routing protocol," draft-ietf-manetolsr- 05.txt, Internet Draft, IETF MANET Working Group, Nov. 2000.
  18. Imdat Kara and T. Bektas, "Integer linear programming formulation of the generalized vehicle routing problem," presented at the 5th EURO/INFORMS Joint International Meeting, Turkey Jul. 2003.
  19. N. Christofides, A. Mingozzi, and P. Toth, "Exact algorithms for the vehicle routing problem, based on spanning tree and shortest path relaxations," Mathematical Programming, vol. 20, no. 01, pp. 255-282, Dec. 1981. https://doi.org/10.1007/BF01589353
  20. C. E. Miller, A. W. Tucker, and R. A. Zemlin, "Integer programming formulation of traveling salesman problems," J. ACM, vol. 7, no. 04, pp. 326-329, Oct. 1960. https://doi.org/10.1145/321043.321046
  21. T. Bektas, "The multiple traveling salesman problem: an overview of formulations and solution procedures," Omega: Int. J. Manage. Sci., vol. 34, no 03, pp. 209-219, Jun. 2006. https://doi.org/10.1016/j.omega.2004.10.004
  22. L. Berkhovskikh and Y. Lysanov, Fundamental of Ocean Acoustics, Springer: Berlin, Heidelberg, 1982.
  23. A.F. Harris and M. Zorzi, "Modeling the underwater acoustic channel in ns2," in Proc. NSTools, Nantes, France, Oct. 2007.
  24. R. Urick, Principles of Underwater Sound, McGraw-Hill, 1983.
  25. I. F. Akyildiz, D. Pompili, and T. Melodia, "Underwater acoustic sensor networks: research challenges," Ad Hoc Networks (Elsevier), vol. 3, no. 03, pp. 257-279, May. 2005. https://doi.org/10.1016/j.adhoc.2005.01.004
  26. Underwater Modem Datasheet, WFS Technologies, Oct. 2012, from : http://www.wfs-tech.com/index.php/products/seatooth/
  27. Underwater Modem Product Brochure, Ambalux Corporation, Oct. 2012, from: http://ambalux.com/gdresources/media/AMB_1013_Brochure.pdf