DOI QR코드

DOI QR Code

Adaptive Compressed Sensing과 Dictionary Learning을 이용한 프레임 기반 음성신호의 복원에 대한 연구

A Study on the Reconstruction of a Frame Based Speech Signal through Dictionary Learning and Adaptive Compressed Sensing

  • 투고 : 2012.08.17
  • 심사 : 2012.11.17
  • 발행 : 2012.12.28

초록

압축센싱은 이미지, 음성신호, 레이더 등 많은 분야에 적용되고 있다. 압축센싱은 주로 통계적 특성이 시불변인 신호에 적용되고 있으며, 측정 데이터를 줄여 압축률을 높일수록 복원에러가 증가한다. 이와 같은 문제점들을 해결하기 위해 음성신호를 프레임 단위로 나누어 병렬로 처리하였으며, dictionary learning을 이용하여 프레임들을 sparse하게 만들고, sparse 계수 벡터와 그 복원값의 차를 이용하여 압축센싱 복원행렬을 적응적으로 만든 적응압축센싱을 적용하였다. 이를 통해 통계적 특성이 시변인 신호도 압축센싱을 이용하여 빠르고 정확한 복원이 가능함을 확인할 수 있었다.

Compressed sensing has been applied to many fields such as images, speech signals, radars, etc. It has been mainly applied to stationary signals, and reconstruction error could grow as compression ratios are increased by decreasing measurements. To resolve the problem, speech signals are divided into frames and processed in parallel. The frames are made sparse by dictionary learning, and adaptive compressed sensing is applied which designs the compressed sensing reconstruction matrix adaptively by using the difference between the sparse coefficient vector and its reconstruction. Through the proposed method, we could see that fast and accurate reconstruction of non-stationary signals is possible with compressed sensing.

키워드

참고문헌

  1. R. G. Baraniuk, "Compressive sensing," IEEE Signal Proc. Mag., vol. 24, no. 4, pp. 118-121, Jul. 2007.
  2. E. J. Candes and M. B. Wakin, "An introduction to compressive sampling," IEEE Signal Proc. Mag., vol. 25, no. 2, pp. 21-30, Mar. 2008. https://doi.org/10.1109/MSP.2007.914731
  3. T. V. Sreenivas and W. B. Kleijn, "Compressive sensing for sparsely excited speech signals," in Proc. ICASSP, pp. 4125-4128, Apr. 2009.
  4. T. Xu, Z. Yang and X. Shao, "Adaptive compressed sensing of speech signal based on data-driven dictionary," in Proc. APCC 2009, pp. 257-260, Sep. 2009.
  5. T. S. Gunawan, O. O. Khalifa, A. A. Shafie and E. Ambikairajah, "Speech compression using compressive sensing on a multicore system," in Proc. ICOM 2011, May 2011.
  6. M. G. Jafari and M. D. Plumbley, "Speech denoising based on a greedy adaptive dictionary algorithm," in Proc. European Signal Proc. Conf., pp. 1423-1426, Aug. 2009.
  7. J. A. Tropp and A. C. Gilbert, "Signal recovery from random measurements via orthogonal matching pursuit," IEEE Trans. Inform. Theory, vol. 53, no. 12, pp. 4655-4666, Dec. 2007. https://doi.org/10.1109/TIT.2007.909108
  8. S. S. Chen, D. L. Donoho and M. A. Saunders, "Atomic decomposition by basis pursuit," SIAM Review, vol. 43, no. 1, pp. 129-159, 2001. https://doi.org/10.1137/S003614450037906X
  9. M. Ahron, M. Elad and A. Bruckstein, "K-SVD: an algorithm for designing overcomplete dictionaries for sparse representations," IEEE Trans. on Signal Proc., vol. 54, no. 11, pp. 4311-4322, Nov. 2006. https://doi.org/10.1109/TSP.2006.881199
  10. K-SVD and OMP Matlab toolbox, from http://www.cs.technion.ac.il/-elad/software/.
  11. ITU-T Study Group 12, "Perceptual evaluation of speech quality(PESQ): an objective method for end-to-end speech quality assessment of narrow-band telephone networks and speech codecs," ITU-T Recommendation pp. 862, Feb. 2001.
  12. M. G. Jafari and M. D. Plumbley, "Fast dictionary learning for sparse representations of speech signals," IEEE signal proc., vol. 5, no. 5, pp. 1027-1030, Sep. 2011.
  13. S. Kunis and H. Rauhut, "Random sampling of sparse trigonometric polynomials, II. Orthogonal matching pursuit versus basis pursuit," Foundations of Computational Mathematics, vol. 8, no. 6, pp. 737-763, Dec. 2008. https://doi.org/10.1007/s10208-007-9005-x