DOI QR코드

DOI QR Code

Distance Measure for Biased Probability Density Functions and Related Equalizer Algorithms for Non-Gaussian Noise

편이 확률밀도함수 사이의 거리측정 기준과 비 가우시안 잡음 환경을 위한 등화 알고리듬

  • 김남용 (강원대학교 전자정보통신공학부)
  • Received : 2012.09.16
  • Accepted : 2012.11.27
  • Published : 2012.12.28

Abstract

In this paper, a new distance measure for biased PDFs is proposed and a related equalizer algorithm is also derived for supervised adaptive equalization for multipath channels with impulsive and time-varying DC bias noise. From the simulation results in the non-Gaussian noise environments, the proposed algorithm has proven not only robust to impulsive noise but also to have the capability of cancelling time-varying DC bias noise effectively.

이 논문에서는 편이된 확률밀도함수 간 거리 측정이라는 새로운 거리 측정 기준을 제안하고 이에 관련된 등화 알고리듬을 도출하여 충격성 잡음과 시변 직류 잡음이 있는 다경로 채널에 적용하였다. 이러한 비 가우시안 잡음 환경에서 시행한 시뮬레이션의 결과로부터, 제안한 알고리듬이 충격성 잡음에 강인성을 보일 뿐 아니라 시변 직류 잡음도 제거하는 탁월한 능력을 가짐을 입증하였다.

Keywords

References

  1. L. M. Garth, "A dynamic convergence analysis of blind equalization algorithms," IEEE Trans. on Commun., vol. 49, pp. 624-634. Apr. 2001. https://doi.org/10.1109/26.917769
  2. K. Blackard, T. Rappaport, and C. Bostian, "Measurements and models of radio frequency impulsive noise for indoor wireless communications," IEEE J. Select. Areas Commun., vol. 11, pp. 991-1001, Sept. 1993. https://doi.org/10.1109/49.233212
  3. K. Koike and H. Ogiwara, "Application of Turbo TCM codes for impulsive noise channel," IEICE Trans. Fund. Electr., vol. E81-A, no. 10, pp. 2032-2039, Oct. 1998.
  4. M. Button, J. Gardiner, and I. Glover, "Measurement of the impulsive noise environment for satellite-mobile radio systems at 1.5 GHz," IEEE Trans. Veh. Technol.. vol. 51, no. 3, pp. 551-560, May 2002. https://doi.org/10.1109/TVT.2002.1002503
  5. M. Richharia, Satellite communication systems: design principles, 2nd Ed. Palgrave Macmillan Limited, 1999.
  6. H. Sedarat, and K. Fishera, "Multicarrier communication in presence of biased-Gaussian noise sources," J. Signal Processing, vol. 88, issue 7, pp. 1627-1635, Jul. 2008. https://doi.org/10.1016/j.sigpro.2007.11.025
  7. J. Mazo, "Asymptotic distortion spectrum of clipped, dc-biased, Gaussian noise," IEEE Trans. Commun., vol. 40, no. 8, pp. 1339-1344, Aug. 1992. https://doi.org/10.1109/26.156638
  8. J. Principe, D. Xu, and J. Fisher, "Information theoretic learning," in: S. Haykin, Unsupervised Adaptive Filtering, Wiley, New York, pp. 265-319, 2000.
  9. E. Parzen, "On the estimation of a probability density function and the mode," J. Ann. Math. Stat. vol. 33, issue 3, pp. 1065-1076, 1962. https://doi.org/10.1214/aoms/1177704472
  10. K. Jeong, J. Xu, D. Erdogmus, and J. Principe, "A new classifier based on information theoretic learning with unlabeled data," Neural Networks, vol. 18, no. 5-6, pp. 719-726, 2005. https://doi.org/10.1016/j.neunet.2005.06.018
  11. N. Kim, "Adaptive equalization using PDF matching algorithms for underwater communication channels with impulsive noise," J. KICS, vol. 36, no. 10, pp. 1210-1215, Oct. 2011. https://doi.org/10.7840/KICS.2011.36B.10.1210
  12. P. Delaney, "Signal detection in multivariate class A interference," IEEE Trans. Commun., vol. 43, no. 2/3/4, pp. 365-373, Feb/Mar./Apr. 1995. https://doi.org/10.1109/26.380055