DOI QR코드

DOI QR Code

Analysis of Heat Island Characteristics Considering Urban Space at Nighttime

도시공간을 고려한 야간시간대의 열섬특성 분석

  • Song, Bong-Geun (Dept. of Environmental Engineering, Changwon National University) ;
  • Park, Kyung-Hun (Dept. of Environmental Engineering, Changwon National University)
  • 송봉근 (창원대학교 환경공학과) ;
  • 박경훈 (창원대학교 환경공학과)
  • Received : 2012.01.20
  • Accepted : 2012.03.05
  • Published : 2012.03.31

Abstract

The purpose of this study is to investigate the characteristics of urban heat island considering urban space at nighttime. We used to analyze landuse and landcover data of 1:1,000 scale, DTM, and surface temperature extracted ASTER image satellite of nighttime. According to the analytical results, heat intensity in single-family residential is higher than that in industrial area, public facility area, and commercial area because the anthropogenic heat by energy consumption is released. Likewise, the temperature difference were big in the buildings of industrial area depending on operating hours. Meanwhile, green and river area had cooling impacts mitigating the urban heat island. Therefore, we have to mitigate heat intensity through constructing green space and waterfront area. As mentioned above, we think that the results of this study will be used as base data for effective spatial planning when formulating development planning to mitigate urban heat island at nighttime.

본 연구는 창원시 도시지역을 대상으로 도시공간을 고려한 야간시간대의 도시열섬특성을 파악하기 위해 1:1,000 축척의 토지이용도 및 토지피복도와 DTM, 그리고 ASTER 위성영상에서 추출된 야간시간대의 지표온도자료를 활용하였다. 분석결과에 따르면, 야간시간대는 건물이 밀집되어있는 단독주거지역이 상업지역이나 공공시설지역보다 열섬강도가 높았고, 이것은 에너지소비에 의한 인공열 방출이 열섬형성에 많은 영향을 미치기 때문으로 판단된다. 또한 이러한 점 때문에 공업지역에서는 건물은 가동시간에 따라 온도차이가 매우 크게 나타났다. 한편, 도시녹지지역과 하천지역은 도시열섬을 완화하는 냉각효과가 있는 것으로 확인되었으며, 열섬강도가 높은 지역에 녹지 및 수변공간의 조성으로 열섬강도를 낮출 필요가 있을 것으로 판단된다. 이상과 같은 결과는 야간시간대의 도시열섬을 완화하는데 있어 개발계획 수립시 효율적인 공간활용을 위해 기초자료로 이용될 것으로 사료된다.

Keywords

References

  1. 송봉근. 2011. 도시기후 및 대기질 개선을 위한 통합적 공간환경평가 및 계획기법의 개발. 창원대학교 대학원 석사학위논문 37-38쪽.
  2. 송봉근, 박경훈. 2011. 도시기후 형성 요소를 고려한 공간유형 분류-창원시를 대상으로-. 환경영향평가 20(3):1-10.
  3. 윤일희 역. 2003. 미기상학개론, 제2판. 시그마프레스. 428쪽.
  4. 이우성, 정성관, 박경훈, 김경태. 2010. 친환경적 공간계획을 위한 도시의 열환경 분석. 한국지리정보학회지 13(1):142-154.
  5. 창원시. 2009. 창원시 환경지도 제작 및 GIS구축 연구보고서.
  6. 창원시. 2010. 창원시 2010년 통계연보.
  7. Akbari, H. and S. Konopacki. 2005. Calculating energy-saving potentials of heat-island reduction strategies. Energy Policy 33:721-756. https://doi.org/10.1016/j.enpol.2003.10.001
  8. Buyantuyev, A. and J. Wu. 2010. Urban heat islands and landscape heterogeneity:linking spatiotemporal variations in surface temperatures to land-cover and socioeconomic patterns. Landscape Ecology 25:17-33. https://doi.org/10.1007/s10980-009-9402-4
  9. Giridharan, R., S.S.Y. Lau and S. Ganesan. 2005. Nocturnal heat island effect in urban residential developments of Hong Kong. Energy and Buildings 37:964-971. https://doi.org/10.1016/j.enbuild.2004.12.005
  10. Givoni, B. 1998. Climate Considerations in Building and Urban Design. Wiley. USA.
  11. Kato, S. and Y. Yamaguchi. 2007. Estimation of storage heat flux in an urban area using ASTER data. Remote Sensing of Environment 110:1-17. https://doi.org/10.1016/j.rse.2007.02.011
  12. Li, J., C. Song, L. Cao, F. Zhu, X. Meng and J. Wu. 2011. Impacts of landscape structure on surface urban heat island; A case study of Shanghai, China. Remote Sensing of Environment 115:3249-3263. https://doi.org/10.1016/j.rse.2011.07.008
  13. Mirzaei, P.A. and F. Haghighat. 2010. Approaches to study urban heat island-abilities and limitations. Building and Environment 45:2192-2201. https://doi.org/10.1016/j.buildenv.2010.04.001
  14. Oke, T.R. 1976. The distinction between canopy and boundary-layer urban heat island. Atmospheric 14:268-277.
  15. Oke, T.R. 1981. Canyon geometry and the urban heat island : comparison of scale model and field observations. Journal of Climatology 1:237-254. https://doi.org/10.1002/joc.3370010304
  16. Oke, T.R. 1987. Boundary Layer Climate. Methuen. USA.
  17. Oke, T.R. 2006. Initial guidance to obtain representative meteorological observation at urban sites, Instruments an observing methods report 81. World Meteorological Organization pp.9-11.
  18. Oliveira, S., H. Andrade and T. Vaz. 2011. The cooling effect of green spaces as a contribution to the mitigation of urban heat: a case study in Lisbon. Building and Environment 46:2186-2194. https://doi.org/10.1016/j.buildenv.2011.04.034
  19. Saaroni, H., E. Ben-Dor, A. Bitan and O. Potchter. 2000. Spatial distribution and microscale characteristics of the urban heat island in Tel-Aviv, Israel. Landscape and Urban Planning 48:1-18. https://doi.org/10.1016/S0169-2046(99)00075-4
  20. Scherer, D. 1999. Improved concepts and methods in analysis and evaluation of the urban climate for optimizing urban planning processes. Atmospheric Environment 33:4185-4193. https://doi.org/10.1016/S1352-2310(99)00161-2
  21. Stewart, I., and T.R. Oke. 2009. Newly developed "Thermal climate zones" for defining and measuring urban heat island magnitude in the canopy layer, The Timothy R Oke Symposium. American Meteorological Society Annual Meeting, Phoenix, AZ.
  22. Voogt, J.A. 2002. Urban heat island, In I. Douglas. Causes and consequences of global environmental change 3:660-666.
  23. Voogt, J.A. and T.R. Oke. 2003. Thermal remote sensing of urban climates. Remote Sensing of Environment 86:370-384. https://doi.org/10.1016/S0034-4257(03)00079-8
  24. Wienert, U. and W. Kuttler. 2001. Statistical analysis of the dependence of urban heat island intensity on latitude. in: Fourth Symposium on Urban Environment.
  25. Wong, N.H. and C. Yu. 2005. Study of green area and urban heat island in a tropical city. Habitat Internatioanl 29:547-558. https://doi.org/10.1016/j.habitatint.2004.04.008
  26. Yamamoto, Y. 2006. Measures to mitigate urban heat islands. QUARTERLY REVIEW 18:65-83.

Cited by

  1. Effect of Land Use on Urban Thermal Environments in Incheon, Korea vol.3, pp.4, 2016, https://doi.org/10.17820/eri.2016.3.4.315
  2. Contribution of Greening and High-Albedo Coatings to Improvements in the Thermal Environment in Complex Urban Areas vol.2015, 2015, https://doi.org/10.1155/2015/792172
  3. Analysis on the Effects of Land Cover Types and Topographic Features on Heat Wave Days vol.19, pp.4, 2016, https://doi.org/10.11108/kagis.2016.19.4.076
  4. Analysis of the MODIS-Based Vegetation Phenology Using the HANTS Algorithm vol.17, pp.3, 2014, https://doi.org/10.11108/kagis.2014.17.3.020
  5. Association between Three-Dimensional Built Environment and Urban Air Temperature: Seasonal and Temporal Differences vol.9, pp.8, 2017, https://doi.org/10.3390/su9081338
  6. An Evaluation of Thermal Comfort on Urban Neighborhood Park for Improving Thermal Environment vol.16, pp.4, 2013, https://doi.org/10.11108/kagis.2013.16.4.153
  7. Comparison of Thermal Effects of Different School Ground Surface Materials vol.18, pp.2, 2015, https://doi.org/10.11108/kagis.2015.18.2.028
  8. GIS를 활용한 부산지역의 해안·강변지역 열섬특성 분석 vol.21, pp.1, 2012, https://doi.org/10.7319/kogsis.2013.21.1.003
  9. 도시지역의 바람길 조성을 위한 야간시간대의 공기순환성 평가 vol.16, pp.2, 2012, https://doi.org/10.11108/kagis.2013.16.2.016
  10. GIS 기반의 물순환 면적률을 활용한 창원시 도심지역의 물순환성 평가 vol.22, pp.5, 2013, https://doi.org/10.14249/eia.2013.22.5.397
  11. 도시열섬 지역에 대한 정의 및 구분 방법론에 관한 비교연구 vol.33, pp.2, 2017, https://doi.org/10.22669/krsa.2017.33.2.047
  12. Analysis of Urban Heat Island Intensity Among Administrative Districts Using GIS and MODIS Imagery vol.20, pp.2, 2017, https://doi.org/10.11108/kagis.2017.20.2.001
  13. Comparison of ASTER Satellite and Ground-Based Surface Temperature Measurements for Urban Heat Island Studies vol.20, pp.3, 2012, https://doi.org/10.11108/kagis.2017.20.3.104
  14. UAV 열적외 영상을 활용한 피복재질별 표면온도 특성 분석 vol.21, pp.3, 2018, https://doi.org/10.11108/kagis.2018.21.3.162
  15. Terra/Aqua MODIS LST를 이용한 폭염 및 한파기간 동안 습지의 지면온도 완화효과 분석 vol.21, pp.no.spc, 2012, https://doi.org/10.17663/jwr.2019.21.s-1.123
  16. GIS 기반 노인인구 분포지역의 공간적 특성과 폭염의 관계 분석 - 창원시를 대상으로 - vol.23, pp.3, 2012, https://doi.org/10.11108/kagis.2020.23.3.068
  17. 대구시 열대야 대응 구역 설정을 위한 야간 찬공기 유동성 분석 vol.23, pp.3, 2012, https://doi.org/10.11108/kagis.2020.23.3.220
  18. Correlation Analysis between Air Temperature and MODIS Land Surface Temperature and Prediction of Air Temperature Using TensorFlow Long Short-Term Memory for the Period of Occurrence of Cold and Heat vol.12, pp.19, 2020, https://doi.org/10.3390/rs12193231
  19. Temperature trend analysis associated with land-cover changes using time-series data (1980–2019) from 38 weather stations in South Korea vol.65, pp.None, 2012, https://doi.org/10.1016/j.scs.2020.102615