과제정보
연구 과제 주관 기관 : Kangwon National University
참고문헌
- Anzidei, M., G. Casula, A. Galvani, A. Pesci, E. Serpelloni, P. Baldi, S. Touam, and S. Kahlouche (2003), Data analysis of the first epoch GPS Algerian regional network, Boll. Geo. Sci. Affini, Vol. 62, No. 3, pp. 179-192.
- Bevis, M., S. Businger, T. A. Herring, C. Rocken, R. A. Anthes, and R. H. Ware (1992), GPS Meteorology : Remote sensing of atmospheric water vapor using the Global Positioning System, J. Geophys. Res., Vol. 97, No. 15, pp. 787-801.
- Bevis, M., ST. Businger, ST. Chriswell (1994), GPS Meteorology: Mapping Zenith Wet Delays onto Precipitable Water, Journal of Applied Meteorology, Vol. 33, pp. 379-386. https://doi.org/10.1175/1520-0450(1994)033<0379:GMMZWD>2.0.CO;2
- Boutiouta, S., and A. H. Belbachir (2006), Magnetic Storms Effects on the Ionosphere TEC through GPS data, Information Technology Journal, Vol, 5, No. 5, pp. 908-915. https://doi.org/10.3923/itj.2006.908.915
- Cao, Y., F. Zheng, Y. Xie, and Y. Bi (2008), Impact of the Weighted Mean Temperature on the Estimation of GPS Precipitable Water Vapor, Microwave and Millimeter Wave Technology, International ICMMT2008 Proceedings, 2, pp. 799-801.
- Daho, S. A. B., and J. D. Fairhead (2007), Accuracy assessment of the available geoid models in Algeria, Computers and Geosciences, Vol. 33, pp. 76-82. https://doi.org/10.1016/j.cageo.2006.05.009
- Davis, J. L., T. A. Herring, I. I. Sharpiro, A. E. E. rogers, and G. elgered (1985), Geodesy by Radio Interferometry: Effects of Atmospheric Modeling Errors on Estimates of Baseline Length, Radio Science, Vol. 20, No 6, pp. 1593-1607. https://doi.org/10.1029/RS020i006p01593
- Dekkiche, H., S. Kahlouche, C. B. Kadri, and R. Mir (2008), Ionospheric Modelling in the North of Algeria, International Association of Geodesy Symposia, Vol. 133, pp. 679-689. https://doi.org/10.1007/978-3-540-85426-5_78
- Frank, P. (1953), Rejection of Outlying Observations, American Journal of Physics, Vol. 21, No. 7, pp. 520-525. https://doi.org/10.1119/1.1933535
- Feng, Y., Z. Bai, P. Fang, and A. Williams (2001), GPS Water Vapour Experimental Results From Observations of the Australian Regional GPS Network (ARGN), A Spatial Odyssey : 42nd Australian Surveyors Congress.
- Liou, Y. A., Y. T. Teng (2001), Comparison of Precipitable Water Observations in the Near Tropics by GPS, Microwave Radiometer, and Radiosondes, Journal of Applied Meteorology, Vol. 40, pp. 5-15. https://doi.org/10.1175/1520-0450(2001)040<0005:COPWOI>2.0.CO;2
- Logan, W. R. (1955), The Reject ion of Outlying Observations, Survey Review, Vol. 13, No. 97, pp. 133-137. https://doi.org/10.1179/003962655792063179
- Mendes, V.B. (1999), Modeling the Neutral-atmosphere Propagation Delay in Radiometric Space Techniques, Ph.D. dissertation, Technical Report No. 199, University of New Brunswick, Fredericton, New Brunswick, Canada.
- Mockler, S. B. (1995), Water vapor in the climate system, special report, AGU, Washington, D. C., Dec.
- Raju, C. S., K. Saha, B. V. Thampi, and K. Parameswaran (2007), Empirical model for mean temperature for Indian zone and estimation of precipitable water vapor from ground based GPS measurements, Ann. Geophys., Vol. 25, pp. 1935-1948. https://doi.org/10.5194/angeo-25-1935-2007
- Ross, R. J., and S. Rosenfeld (1997), Estimating mean weighted temperature of the atmosphere for Global Positioning System applications, J. Geophys. Res., Vol. 102, No. D18, pp. 21,719-21,730. https://doi.org/10.1029/97JD01808
- Ross, R. J., and W. P. Elliott (1996), Tropospheric precipitable water: A radiosonde-based climatology, NOAA Tech. Memo. ERL ARL-219, 132 pp., Natl. Oceanic and Atmos. Admin., Silver Spring, Md.
- Schuler, T. (2001), On Ground-Based GPS Tropospheric Delay Estimation, Doctor's Thesis, Studiengang Geodsie und Geoinformation, Universitt der Bundeswehr Munchen (University FAF Munich), Germany.
- Smith, E. K. and S. Weintraub (1953), The Constants in the Equation for Atmospheric Refractive Index at Radio Frequencies, Proceedings of IEEE, Vol. 41, pp. 1035-1037.
- Solbrig, P. (2000), Untersuchungen ber die Nutzung numerischer Wettermodelle zur Wasserdampfbestimmung mit Hilfe des Global Positioning Systems, Diploma Thesis, Institute of Geodesy and Navigation, University FAF Munich, (In German).
- Song, D.S. and D. A. Grejner-Brzezinska (2009), Remote sensing of atmospheric water vapor variation from GPS measurements during a severe weather event, Earth, Planets and Space, Vol. 61, No. 10, pp. 1117-1125. https://doi.org/10.1186/BF03352964
- Thayer, D. (1974), An Improved Equation for the Radio Refractive Index of Air, Radio Science, Vol. 9, pp. 803-807. https://doi.org/10.1029/RS009i010p00803
- UNECA (United Nations Economic Commission for Africa) (2008), African Geodetic Reference Frame (AFREF), Newsletter, May.
- Wang, J., L. Zhang, and A. Dai (2005), Global estimates of water-vapor-weighted mean temperature of the atmosphere for GPS applications, J. Geophys. Res., Vol. 110, No. D21101, doi:10.1029/20005JD006215.
- Yelles, K., K. Lammali, A. Mahsas, E. Calais, P. Briole (2004), Coseismic deformation of the May 21st, 2003, Mw= 6.8 Boumerdes earthquake, Algeria, from GPS measurements, Geophys. Res. Lett., Vol. 31, pp. 1-4.
- Yuan, L. L., R. A. Anthes, R. H. Ware, C. Rocken, W. D. Bonner, M. G. Bevis, and S. Businger (1993), Sensing Climate Change Using the Global Positioning System, J. Geophys. Res., Vol. 98, No. D8, pp. 14,925-14,937. https://doi.org/10.1029/93JD00948
피인용 문헌
- Seasonal Multifactor Modelling of Weighted-Mean Temperature for Ground-Based GNSS Meteorology in Hunan, China vol.2017, pp.1687-9317, 2017, https://doi.org/10.1155/2017/3782687