DOI QR코드

DOI QR Code

Air Circulating Oven-drying Characteristics of Hollowed Round-post for Korean Main Conifer Species - Part 1: For Japanese larch hollowed round-post -

주요 국산 침엽수 통원주 부재의 송풍오-븐건조 특성 - 제1보: 국산 낙엽송 통원주 부재를 중심으로 -

  • Lee, Nam-Ho (College of Agriculture & Life Sciences, Chonbuk National University) ;
  • Zhao, Xue-Feng (Department of Wood Science & Engineering, Beihua University) ;
  • Shin, Ik-Hyun (College of Agriculture & Life Sciences, Chonbuk National University) ;
  • Lee, Chang-Jin (College of Agriculture & Life Sciences, Chonbuk National University)
  • 이남호 (전북대학교 농업생명과학대학) ;
  • ;
  • 신익현 (전북대학교 농업생명과학대학) ;
  • 이창진 (전북대학교 농업생명과학대학)
  • Received : 2011.11.17
  • Accepted : 2012.01.16
  • Published : 2012.01.25

Abstract

This study examined the effects of the drying rate, temperature distribution and vapor pressure on the surface checks occurring during the air circulating oven-drying of hollowed short Japanese larch (Larix Kaemferi C.) round posts treated with coating (CO) and vapor-dam (VD). The hollowed round posts could be dried from the green condition to a moisture content of approximately 8% in 72 to 144 hours. The temperature in the hole was higher than that inside of wood for Control and VD specimens, while VD specimen showed opposite distribution. The vapor pressure inside the wood was higher than that in the hole for the CO and VD specimens during hole drying stage. There were few surface checks found in the specimens but the number increased in order the of CO, VD and Control specimens.

낙엽송 원통형 원주목에 대하여 수증기댐처리와 코팅처리를 실시하여 오-븐건조 하면서 건조속도, 재내의 수증기압 및 재온분포 및 건조할렬 등을 조사한 결과는 다음과 같다. 생재에서 난방된 실내의 이용함수율 수준인 함수율 약 8%까지 건조하는데 72~144시간 소요되었다. 무처리재와 코팅처리재는 전 건조기간에 걸쳐 통공층의 온도가 통피층의 온도보다 항상 높은 분포모형을 보인 반면, 수증기댐처리재의 경우 통피층의 온도가 통공층보다 높거나 같은 분포를 보였다. 수증기댐처리재와 코팅처리재의 경우는 거의 전 건조기간에 걸쳐 통피층의 수증기압이 통공층 보다 큰 분포를 보였다. 총체적으로 할렬발생 정도는 미약하였으며 할렬개수는 코팅처리재, 수증기댐처리재, 무처리재의 순으로 양호한 것으로 나타났다.

Keywords

References

  1. Avramidis, S., F. Liu, and B. J. Neilson. 1994. Radio-frequency/vacuum drying of softwood: drying of thick western red cedar with constant electrode voltage. Forest Products Journal 44(1): 41-47.
  2. Evans, P. D., R. Wingate-Hill, and S. C. Barry. 2000. The effects of different kerfing and center-boring treatments on the checking of ACQ treated pine posts exposed to the weather. Forest Products Journal 50(2): 59-64.
  3. Harris, R. A. and M. A. Taras. 1984. Comparison of moisture content distribution, stress distribution and shrinkage of red oak lumber dried by a radio- frequency/vacuum drying process and a conventional kiln. Forest Products Journal 34(1): 44-54.
  4. Helsing, G. and R. D. Graham. 1976. Saw kerfs reduce checking and prevent internal decay in pressure-treated Douglas-fir poles. Holzforschung 30(6): 184-186. https://doi.org/10.1515/hfsg.1976.30.6.184
  5. Kanagawa, Y. 1989. Resin distribution in lumber dried by vacuum drying combined with radio- frequency. Proc. of the IUFRO International Wood Drying Symposium. Seatle, Washington, USA 158-163.
  6. Lee, N. H. and J. Y. Luo. 2002. Effect of steam explosion treatments on drying rates and moisture distributions during radio-frequency/vacuum drying of larch pillar combined with a longitudinal kerf. Journal of Wood Science 48: 270-276. https://doi.org/10.1007/BF00831346
  7. Pavlo B. and P. Niemz. 2003. Effect of high temperature on the change in color, dimensional stabilityand mechanical properties of spruce [J]. Holzforschung 57: 539-546. https://doi.org/10.1515/HF.2003.080
  8. Ruddick, J. N. R. and N. A. Ross. 1979. Effect of kerfing on checking of untreated Douglas fir pole sections. Forest Products Journal 29(9): 27-30.
  9. Yoshida, T., T. Hashizume, and N. Fujimoto. 2000. High-temperature drying characteristics on boxedheart square timber of karamatsu and sugi-Influences of high temperature conditions with low humidity on drying properties. Mokuzai Kogyo 55(8): 357-362 (in Japanese).
  10. 최준호, 이남호. 2002. 원주슬라이스법에 의한 원반내접선방향 변형율의 방사방향 분포 평가. 전북대학교 석사학위논문 6-11.
  11. 이남호, Chengyuan Li, 최준호. 2003. 원주상 슬라이스의 오-븐건조법에 의한 함수율의 원반내 방사방향 분포 추이 평가(I). 목재공학 31(1): 10-15.