DOI QR코드

DOI QR Code

수평 직사각 덕트 내 임계점 부근 물의 대류열전달 특성

Convective Heat Transfer to Water near the Critical Region in Horizontal Rectangular Ducts

  • 이상호 (원광대학교 기계자동차공학부)
  • Lee, Sang-Ho (Div. of Mechanical and Automotive Engineering, Wonkwang Univ.)
  • 투고 : 2011.06.20
  • 심사 : 2012.02.27
  • 발행 : 2012.05.01

초록

수평 덕트 내 임계점부근의 유체 유동 및 열전달특성은 중력과 함께 임계영역에서의 열역학 및 전달 물성치의 많은 변화와 직접적으로 연관되어 있다. 본 연구에서는 수평 직사각 덕트 내 임계점부근의 물에 대한 대류열전달특성을 전산해석을 통하여 분석하였다. 이를 통해 국부적인 열전달계수와 유속, 온도, 그리고 물성치분포를 포함한 대류열전달특성에 대해 임계점 근접효과와 함께 비교하였다. 벽으로부터의 열전달에 따른 유체 밀도감소로 덕트 내 유동방향으로의 유속증가와 함께 유체가 액체에서 기체 같은 상태로 천이하는 형태의 유동장특성을 보여준다. 덕트의 윗면, 옆면, 그리고 아래면 각각의 국부적인 열전달계수분포에 큰 차이가 있으며 준임계점 온도부근에서 난류전달특성의 향상으로 열전달계수의 최대치에 이르게 된다. Nu 수는 덕트 내 압력과 종횡비에 영향을 받으며 임계압에 가까워질수록 최대 Nu 수는 급격히 증가하게 된다. 이와 함께 기존의 열전달상관식을 통한 결과와 예측된 Nu 수 분포를 비교하였다.

Fluid flow and heat transfer in horizontal ducts are strongly coupled with large changes in thermodynamic and transport properties near the critical region as well as the gravity force. Numerical analysis has been carried out to investigate convective heat transfer in horizontal rectangular ducts for water near the thermodynamic critical point. Convective heat transfer characteristics, including velocity, temperature, and the properties as well as local heat transfer coefficients along the ducts are compared with the effect of proximity on the critical point. When there is flow acceleration because of a density decrease, convective heat transfer characteristics in the ducts show transition behavior between liquid-like and gas-like phases. There is a large variation in the local heat transfer coefficient distributions at the top, side, and bottom surfaces, and close to the pseudocritical temperature, a peak in the heat transfer coefficient distribution resulting from improved turbulent transport is observed. The Nusselt number distribution depends on pressure and duct aspect ratio, while the Nusselt number peak rapidly increases as the pressure approaches the critical pressure. The predicted Nusselt number is also compared with other heat transfer correlations.

키워드

참고문헌

  1. Hall, W. B., 1971, "Heat Transfer Near the Critical Point," Advances in Heat Transfer, Vol. 7, pp. 1-83. https://doi.org/10.1016/S0065-2717(08)70016-9
  2. Polyakov, A. J., 1991, "Heat Transfer Under Supercritical Pressures," Advances in Heat Transfer, Vol. 21, pp. 1-50. https://doi.org/10.1016/S0065-2717(08)70333-2
  3. Pioro, I. L., Khartabil, H. F. and Duffey, R. B., 2004, "Heat Transfer to Supercritical Fluids Flowing in Channels-Empirical Correlations(survey)," Nuclear Engineering and Design, Vol. 230, pp. 69-91. https://doi.org/10.1016/j.nucengdes.2003.10.010
  4. Liao, S. M. and Zhao T. S., 2002, "An Experimental Investigation of Convection Heat Transfer to Supercritical Carbon Dioxide in Miniature Tubes," International Journal of Heat and Mass Transfer, Vol. 45, pp. 5025-5034. https://doi.org/10.1016/S0017-9310(02)00206-5
  5. Yamagata, K., Nishikawa, K., Hasegawa, S., Fujii, T. and Yoshida, S., 1972, "Forced Convective Heat Transfer to Supercritical Water Flowing in Tubes," International Journal of Heat and Mass Transfer, Vol. 15, pp. 2575-2593. https://doi.org/10.1016/0017-9310(72)90148-2
  6. Jiang, P. X., Zhang, Y. and Shi, R. F., 2007, "Experimental and Numerical Investigation of Convection Heat Transfer of $CO_2$ at Supercritical Pressures in a Vertical Mini Tube," International Journal of Heat and Mass Transfer, Vol. 51, pp. 3052-3056. https://doi.org/10.1016/j.ijheatmasstransfer.2007.09.008
  7. Yoon, S. H., Kim, J. H., Hwang, Y. W., Kim, M. S. Min, K. D. and Kim, Y. C., 2003, "Heat Transfer and Pressure Drop Characteristics during the In-tube Cooling Process of Carbon Dioxide in the Supercritical Region," International Journal of Refrigeration, Vol. 26, pp. 857-864. https://doi.org/10.1016/S0140-7007(03)00096-3
  8. Kurganov, V. A. and Kaptilyni, A. G., 1993, "Flow Structure and Turbulent Transport of a Supercritical Pressure Fluid in a Vertical Heated Tube Under the Conditions of Mixed Convection Experimental Data," International Journal of Heat and Mass Transfer, Vol. 36, No. 13, pp. 3383-3392. https://doi.org/10.1016/0017-9310(93)90020-7
  9. McEligot, D. M. and Jackson, J. D., 2004, "Deterioration Criteria for Convective Heat Transfer in Gas Flow through Non-Circular Ducts," Nuclear Engineering and Design, Vol. 232, pp. 327-333. https://doi.org/10.1016/j.nucengdes.2004.05.004
  10. Koshizuka, S., Takano, N. and Oka, Y., 1995, "Numerical Analysis of Deterioration Phenomena in Heat Transfer to Supercritical Water," International Journal of Heat and Mass Transfer, Vol. 38, No. 16, pp. 3077-3084. https://doi.org/10.1016/0017-9310(95)00008-W
  11. Zhang, X. R. and Yamaguchi, H., 2007, "Forced Convection Heat Transfer of Supercritical $CO_2$ in a Horizontal Circular Tube," Journal of Supercritical Fluids, Vol. 41, pp. 412-420. https://doi.org/10.1016/j.supflu.2006.11.003
  12. Bae, J. H., Yoo, J. Y. and Choi, H., 2004, "Direct Numerical Simulation of Turbulent Heat Transfer to Fluids at Supercritical Pressure Flowing in Vertical Tubes," Korean Journal of Mechanical Engineering, Vol. 28, No. 11, pp. 1302-1314.
  13. Song, J. H., Kim, H. Y., Kim, H. and Bae, Y. Y., 2008, "Heat Transfer Characteristics of a Supercritical Fluid Flow in a Vertical Pipe," Journal of Supercritical Fluids, Vol. 44, pp. 164-171. https://doi.org/10.1016/j.supflu.2007.11.013
  14. Zhou, N. and Krishnan, A., 1995, "Laminar and Turbulent Heat Transfer in Flow of Supercritical $CO_2$," 30th National Heat Transfer Conference, pp. 53-63.
  15. Choi, Y. D., Joo, K. S., Kim, Y. C. and Kim, M. S., 2002, "Numerical Analysis of Turbulent Carbon Dioxide Flow and Heat Transfer under Supercritical State in a Straight Duct with a Square Cross Section," Korean Journal of Air-Conditioning and Refrigeration Engineering, Vol. 14, No. 12, pp. 1004-1013.
  16. Lam, C. K. G. and Bremhorst, K., 1981, "A Modified Form of the k-ε Model for Predicting Wall Turbulence," Journal of Fluids Engineering, Vol. 103, pp. 456-460. https://doi.org/10.1115/1.3240815
  17. Li, L. J., Lin, C. X. and Ebadian, M.A., 1999, "Turbulent Heat Transfer to Near-Critical Water in a Heated Curved Pipe Under the Conditions of Mixed Convection," International Journal of Heat and Mass Transfer, Vol. 42, pp. 3147-3158. https://doi.org/10.1016/S0017-9310(98)00365-2
  18. Lester, H., John, S. G. and George, S. K., 1984, "Steam Tables," Hemisphere, New York,.
  19. Patankar, S. V., 1980, "Numerical Heat Transfer and Fluid Flow," Hemisphere, Washington, DC.