DOI QR코드

DOI QR Code

Case Study on the Hazard Susceptibility Prediction of Debris Flows using Surface Water Concentration Analysis and the Distinct Element Method

수계 집중도 분석 및 개별요소법을 이용한 토석류 위험도 예측 사례 연구

  • Lee, Jong-Hyun (Geotechnical Engineering Research Division, Korea Institute of Construction and Technology) ;
  • Kim, Seung-Hyun (Geotechnical Engineering Research Division, Korea Institute of Construction and Technology) ;
  • Ryu, Sang-Hoon (Geotechnical Engineering Research Division, Korea Institute of Construction and Technology) ;
  • Koo, Ho-Bon (Geotechnical Engineering Research Division, Korea Institute of Construction and Technology) ;
  • Kim, Sung-Wook (Geo-information Research Group Co., Ltd.)
  • 이종현 (한국건설기술연구원 Geo-인프라연구실) ;
  • 김승현 (한국건설기술연구원 Geo-인프라연구실) ;
  • 류상훈 (한국건설기술연구원 Geo-인프라연구실) ;
  • 구호본 (한국건설기술연구원 Geo-인프라연구실) ;
  • 김성욱 ((주)지아이 지반정보연구소)
  • Received : 2012.09.06
  • Accepted : 2012.09.25
  • Published : 2012.09.28

Abstract

Various studies regarding the prediction of landslides are underway internationally. Research into disaster prevention with regard to debris flows is a particular focus of research because this type of landslide can cause enormous damage over a short period. The objective of this study is to determine the hazard susceptibility of debris flow via predictions of surface water concentrations based on the concept that a debris flow is similar to a surface water flow, as it is influenced by mountain topography. This study considered urban areas affected by large debris flows or landslides. Digital mapping (including the slope and upslope contributing areas) and the wetness index were used to determine the relevant topographic factors and the hydrology of the area. We determined the hazard susceptibility of debris flow by predicting the surface water concentration based on the topography of the surrounding mountainous terrain. Results obtained using the distinct element method were used to derive a correlation equation between the weight and the impact force of the debris flow. We consider that in using a correlation equation, this method could assist in the effective installation of debris-flow-prevention structures.

국내외적으로 산사태 예측을 위한 다양한 연구가 진행되고 있다. 특히 산사태의 일종인 토석류는 순간적으로 많은 피해를 야기하므로 이에 대한 연구는 방재차원에서 반드시 필요하다. 본 연구에서는 토석류의 흐름이 산지 지형을 따르는 지표수의 흐름과 일치하는 원리를 이용하여 산지 지형에 따른 수계 특성을 파악함으로써 토석류 발생 위험도를 파악하는데 그 목적이 있다. 이를 위해 산사태 및 토석류의 영향을 받는 도심 인근지를 대상으로 지형 특성 및 수계 특성을 분석하기 위해 수치지형도를 활용하여 경사도, 상부사면 기여면적, 습윤지수를 파악하였으며, 지형요소 분석에 의한 산지수계의 집중도를 예측함으로써 지형요소를 고려한 토석류의 위험도 예측이 가능하였다. 또한, 개별요소법을 이용한 토석류 수치해석을 수행하여 연구지역 내 토석류의 무게-충격력 사이의 상관관계식을 도출하였으며, 이를 활용하여 효과적인 토석류 방지구조물의 설치가 기대된다.

Keywords

References

  1. Beven, K.J. and Kirkby, M.J., 1979, A physical-based variable contributing area model of basin hydrology, Water Resources Publication, 625-668.
  2. Costa-Cabral and Burges, 1994, Digital elevation model networks (DEMON); A model of flow over hillslopes for computation of contributing and dispersal area, Water Resources Research, 30, 1681-1692. https://doi.org/10.1029/93WR03512
  3. Cruden, D.M. and Varnes, D.J., 1996, Landslide types and processes. In: Turner A.K.; Schuster R.L. (eds) Landslides: Investigation and Mitigation. Transportation Research Board, Special Report 247, 36-75.
  4. Grayson, R.B., Moore, I.D., and Mcmahon, T.A., 1992, Physically based hydrologic modeling 1, A terrainbased for investigative purposes, Water Resources Research., 10, 2639-2658.
  5. Kim, J.H., 2003, The occurrence of debris flows and disaster prevention technology, Sanrimji July, 72-77 (in Korean).
  6. Kim, N.J. and Hong, S.H., 1975, Korea geologic maps, Anyang sheet, Geological Minerals Institute, 20 (in Korean).
  7. Korea Forest Service, 1998, Erosion control course book, 155-172 (in Korean).
  8. Ministry of Land, Transport and Maritime Affairs, 2008, Road safety facilities installation and management guidelines, 454 (in Korean).
  9. National Institute for Disaster Prevention, 2008, A Study on the Steep Slope Information Compilation and Establishment of an Analysis System, 7-106 (in Korean).
  10. O'Callaghan, J.F. and Mark, D.M., 1984, The extraction of drainage networks from digital elevation data, Computer Vision Graphics Image Process, 28, 323- 344. https://doi.org/10.1016/S0734-189X(84)80011-0
  11. Wolock, D.M. and Price, C.V., 1994, Effects of digital elevation model map scale and data resolution on a topography-based watershed model, Water Resources Research, 30, 3041-3052. https://doi.org/10.1029/94WR01971
  12. Yamamoto, A., Yamamoto, S., Toriihara, M., and Hirama, K., 1998, Impact Load on Sabo Dam due to Debris Flow, Journal of Japanese Society for Erosion Control, 51, 22-30.