DOI QR코드

DOI QR Code

Dynamic Tree Formation Protocol in UAV Formation Flying Network for Disaster Monitoring

재난 모니터링을 위한 편대비행 UAV 네트워크에서 동적 트리 형성 프로토콜

  • Park, Jin-Hee (Dept. of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Kim, Yeon-Joo (RFID/USN Convergence Research Center, Korea Electronics Technology Institute) ;
  • Chung, Jin-Wook (Dept. of Electrical and Computer Engineering, Sungkyunkwan University)
  • Received : 2012.04.04
  • Accepted : 2012.04.30
  • Published : 2012.04.30

Abstract

In this paper, we propose a dynamic tree formation protocol for multiple UAV which is gathering data or accomplishing a mission such as disaster monitoring, environment monitoring, and disaster relief. Especilly, we designed Hop-LQI Weight algorithm to form optimal tree in wireless dynamic environment applying situation of radio signal attenuation over distance and implemented our algorithm in MSP 430 K-mote sensor platform using TinyOS codes. We verified performance of our algorithm by comparing average link setup time by the number of nodes with minimum LQI, link cost calculation method in wireless communication.

본 논문에서는 재난모니터링, 환경감시 및 재난구호 등의 정보 수집 및 정찰 등의 임무를 수행하는 다수의 UAV들로 구성된 편대비행 네트워크를 위해 동적 트리 형성 프로토콜을 제안하였다. 특히 무선 동적 환경에 적응한 최적의 트리를 구성하기 위한 링크 비용을 구하기 위해 거리에 따른 무선 신호 감쇄현상을 적용하여 Hop-LQI Weight 알고리즘을 고안하였으며 이를 MSP430 K-mote 센서 플랫폼에 TinyOS 코드를 구현하였다. 이를 무선 통신에서 링크 비용 산출 기법인 Minimum LQI 방법과 노드 수에 따른 평균 경로 설정시간을 비교를 통하여 성능을 검증하였다.

Keywords

References

  1. IEEE std. 802.15.4-2003: Wireless Medium Access Control (MAC) and Physical Layer (PHY) specification for Low Rate Wireless Personal Area Netrorks (LR-WPANS).
  2. Cnawali O, Fonseca R, Jamieson K, Levis P, CTP: Robust and Efficient Collection through Control and Data Plane Integration. Stanford Univ. Technical Report SING-08-02.
  3. F. Cuomo, S. Della Luna, U. Monaco and T. Melodia, "Routing in Zigbee: benefits from exploiting the IEEE 802.15.4 association tree", IEEE International Conference on Communications, pp.3271-3276, June 2007.
  4. C. Gomez, A. Boxi and J. Paradells, "Impact of LQI-Based Routing Metrics on the Performance of a One-to-One Routing Protocol for IEEE 802.15.4 Multihop Networks", EURASIP Journal on Wireless Communications and Networking, vol. 2010, pp.1-20, 2010.
  5. Carles Gomez, Antoni Boix, and Josep Paradells, "Impact of LQI-Based Routing Metrics on the Performance of a One-to-One Routing Protocol for IEEE 802.15.4 Multihop Networks", EURASIP Journal on Wireless Communications and Networking, 2010.
  6. 이완직, 이원열, 허석렬, "Minimun LQI 기반의 On-demand 센서네트워 크라우팅 프로토콜", 한국산학기술학회논문지, 제 10권, 제 11호, pp. 3218-3226, 2009.
  7. A. Gupta, M. Sharma, M. marot and M. Becker, "HybridLQI: Hybrid MultihopLQI for Improving Asymmetric Links in Wireless Sensor Networks" 2010 Sixth Advanced International Conference on Telecommunications, pp.298-305, May 2010.
  8. J.B. Anderson, "Propagation Measurements and Models for wireless Communications Channels", IEEE Communication Magazine, 1994.
  9. David M. Polzar, "Microwave and RF Wireless System", John Wiley & Sons, p163, 2002.
  10. TinyOS. MultiHopLQI. http://www.tinyos.net/tinyos-1.x/tos/lib/MultiHopLQI, 2004.
  11. Philip Levis, "TinyOS Programming", http://www.tinyos.net/tinyos-2.x /doc/pdf/tinyos-programming.pdf, October 2006.
  12. CC2420 Radio, http://www.ti.com/lit/ds/symlink/cc2420.pdf, Mar 2007.