DOI QR코드

DOI QR Code

다치양자논리에 의한 다중제어 Toffoli 게이트의 실현

Realization of Multiple-Control Toffoli gate based on Mutiple-Valued Quantum Logic

  • 박동영 (강릉원주대학교 정보통신공학과)
  • Park, Dong-Young (Dept. of Information & Telecommunication Eng., Gangnung-Wonju National University)
  • 투고 : 2011.12.26
  • 심사 : 2012.02.28
  • 발행 : 2012.02.29

초록

다중제어 Toffoli(multiple-control Toffoli, MCT) 게이트는 원시 게이트에 의존적인 양자 기술을 필요로 하는 매크로 레벨 다치(multiple-valued) 게이트이며, Galois Field sum-of-product(GFSOP)형 양자논리 함수의 합성에 사용되어 왔다. 가역 논리는 저전력 회로 설계를 위한 양자계산(quantum computing, QC)에서 매우 중요하다. 본 논문은 먼저 GF4 가역 승산기를 제안한 후 GF4 승산기 기반의 quaternary MCT 게이트 실현을 제안하였다. MCT 게이트 실현을 위한 비교에서 제안한 MCT 게이트가 다중제어 입력이 증가할수록 종전의 작은 MCT 게이트 합성 방법보다 원시 게이트 수와 게이트 지연을 상당량 줄일 수 있음을 보였다.

Multiple-control Toffoli(MCT) gates are macro-level multiple-valued gates needing quantum technology dependent primitive gates, and have been used in Galois Field sum-of-product (GFSOP) based synthesis of quantum logic circuit. Reversible logic is very important in quantum computing for low-power circuit design. This paper presents a reversible GF4 multiplier at first, and GF4 multiplier based quaternary MCT gate realization is also proposed. In the comparisons of MCT gate realization, we show the proposed MCT gate can reduce considerably primitive gates and delays in contrast to the composite one of the smaller MCT gates in proportion to the multiple-control input increase.

키워드

참고문헌

  1. M. Nielsen, I. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, 2000.
  2. H. Bechmann-Pasquinucci, A. Peres, "Quantum cryptography with 3-state systems," Phys. Rev. Lett. 85, 2000.
  3. M. Bourennane, A. Karlsson, G. Bjoerk, "Quantum key distribution using multilevel encoding," Phys. Rev. Lett. A 64, 2001.
  4. A.D. Greentree, S.G. Schirmer, F. Green, L.C.L. Hollenberg, A.R. Hamilton, R.C. Clark, "Maximizing the Hilbert Space for a finite number of distinguishable states," Phys. Rev Lett. 92 ,2004.
  5. A. Muthukrishnan, C.R. Stroud Jr., "Multivalued logic gates for quantum computation," Phys. Rev. A 62, 2000.
  6. J. I. Cirac and P. Zoller, "Quantum computations with cold trapped ions," Phys. Rev. Lett. 74, 4091, 1995. https://doi.org/10.1103/PhysRevLett.74.4091
  7. A. Muthukrishnan, C.R. Stroud Jr., "Multivalued logic gates for quantum computation," Phys. Rev. A 62, 2000.
  8. Mozammel H.A. Khan, "Quantum realization of Quaternary Feynman and Toffoli gates," 4th International Conference on Electrical and Computer Engineering ICECE, 19-21 December, Dhaka, Bangladesh, pp.157-160, 2006.
  9. A.I. Khan, N. Nusrat, S.M. Khan, M. Hasan, and M.H.A. Khan, "Quantum realization of some ternary circuits using Muthukrishnan-Stroud gates", proceedings of 37th International Symposium on Multiple-Valued Logic (ISMVL 2007), 14-16, Oslo, Norway, May 2007.
  10. Khan M.M.M., Biswas A.K., Chowdhury S., Tanzid M., Mohsin K.M., Hasan M., and Khan A.I., "Quantum realization of some quaternary circuits," TENCON 2008, IEEE Region 10 Conference, pp.1-5, 2008.
  11. Mozammel H. A. Khan, "Quantum Realization of Multiple-Valued Feynman and Toffoli Gates Without Ancilla Input," Proc. of 39th IEEE Int. Symp. on Multiple-Valued Logic (ISMVL 2009), pp.103-108, 2009.
  12. M.M.M. Khan, Ayan Kumar Biswas, Shuvro Chowdhury, Masud Hasan and Asif Islam Khan "Synthesis of GF(3) based Reversible/Quantum Logic Circuits Without Garbage Output," Proc. of 39th IEEE Int. Symp. on Multiple-Valued Logic (ISMVL 2009), pp.98-102, 2009.
  13. Ayan Kumar Biswas, Shuvro Chowdhury, Md. Mahmud Muntakim Khan, Masud Hasan and Asif Islam Khan, "Some Basic Ternary Operations Using Toffoli Gates along with the Cost of Implementation," Proc. of 41th IEEE Int. Symp. on Multiple-Valued Logic (ISMVL 2011),Tuusula, Finland, May 23-25, pp. 142-146, 2011.

피인용 문헌

  1. QCA를 이용한 효율적인 BCD-3초과 코드 변환기 설계 vol.17, pp.6, 2012, https://doi.org/10.12673/jkoni.2013.17.6.700
  2. QCA 기반의 효율적인 PCA 구조 설계 vol.18, pp.2, 2014, https://doi.org/10.12673/jant.2014.18.2.178