DOI QR코드

DOI QR Code

Relationship between Higher Fungi Distribution and Climatic Factors in Naejangsan National Park

내장산국립공원의 고등균류 발생과 기후환경 요인과의 관계

  • Jang, Seog-Ki (Department of Environmental Landscape Architecture, College of Life Science & Natural Resource, Wonkwang University) ;
  • Kim, Sang-Wook (Department of Environmental Landscape Architecture, College of Life Science & Natural Resource, Wonkwang University)
  • 장석기 (원광대학교 생명자원과학대학 환경조경학과) ;
  • 김상욱 (원광대학교 생명자원과학대학 환경조경학과)
  • Received : 2012.03.20
  • Accepted : 2012.03.27
  • Published : 2012.04.01

Abstract

This study was conducted to investigate the diversity of higher fungi and relationship between higher fungi and climatic factors in Naejangsan National Park from April 2004 to October 2010. The obtained results from investigation were as follows. The higher fungi were classified into 48 families, 158 genera and 451 species in Basidiomycotina, 13 families, 26 genera and 39 species in Ascomycotina, and 4 families, 7 genera and 7 species in Myxomycetes, and most of them belonged to Hymenomycetidae in Basidiomycotina. Dominant species belonged to Ttricholomataceae (72 species), Russulaceae (39 species), Polyporaceae (41 species), Boletaceae (40 species), Cortinariaceae (35 species) and Amamtaceae (28 species). For the habitat environment, the ectomycorrhizal mushrooms were 38.8% (15 families, 36 genera and 193 species), litter decomposing and wood rotting fungi 39.4% (36 families, 107 genera and 196 species), grounding Fungi 19.9% (24 families, 51 genera and 99 species) and others 1.8% (3 families, 4 genera and 9 species). Monthly, most of higher fungi were found in July, August and September, and least found in November. In climatic conditions, most higher fungi were occurred in $23^{\circ}C$and above of mean temperature, $20^{\circ}C$and above of minimum temperature, and $29^{\circ}C$and above of maximum temperature. most of higher fungi were found in 73% and above of relative humidity and 200 mm and above of monthly precipitation. In case of ectomycorrhizal fungi like Amamtaceae, Boletaceae and Cortinariaceae, significance levels are not high in $32^{\circ}C$ and above of maximum temperature which mostly affects species occurrence than other climatic factors of mean and minimum temperature and monthly precipitation.

2004년 4월부터 2010년 10월까지 내장산 국립공원 고등균류를 조사한 결과는 다음과 같다. 진균문의 담자균아문 48과 158속 451종, 자낭균아문 13과 26속 39종, 점균문 4과 7속 7종이 조사되었으며, 대부분의 고등균류는 담자균아문 중 모균아강에 속하는 것으로 나타났다. 가장 많이 발생된 균류는 송이버섯과로 72종이었으며, 무당버섯과(43종), 구멍장이버섯과(41종), 그물버섯과(40종), 끈적버섯과(35종), 광대버섯과(28종)순이었다. 미기록종이라 판단되는 종은 무당버섯과 1종(Lactarius vietus), 압정버섯과 1종(Ionomidotis frondosa), 트리코코마과 1종(Penicilliopsis clavariaeformis), 망사점균과 1종(Fuligo septica) 등 총 4과 4속 4종이 조사되었다. 서식환경별 분포에서는 외생균근성버섯이 15과 36속 193종(38.8%), 낙엽 및 목재부후균은 36과 107속 196종(39.4%), 지상균은 24과 51속 99종(19.9%) 및 기타 3과 4속 9종(1.8%)인 것으로 나타났다. 월별 분포에서는 7월이 가장 많은 종수가 조사되었고 8월, 9월 순으로 나타났으며, 11월의 분포가 가장 적은 것으로 나타났다. 기후 환경별 요인에 있어 대부분의 고등균류는 평균온도 $23^{\circ}C$이상, 최저온도 $20^{\circ}C$이상, 최고온도 $29^{\circ}C$이상일 때, 상대습도는 73% 이상일 때, 월 강수량는 200 mm 이상일 때 종 발생이 높아지는 것으로 나타났다. 특히, 외생균근성버섯인 광대버섯과, 그물버섯과 및 끈적버섯과 등 외생균근성버섯은 최고온도 $32^{\circ}C$이상에서 유의성이 낮아지는 것으로 나타나 평균온도, 최저온도, 상대습도 및 강수량 등에 비해 종 발생에 많은 영향을 주는 것으로 나타났다.

Keywords

References

  1. 김길중. 2004. 인천광역시 서구 철마산의 고등균류상 조사연구. 인천대학교. p. 45.
  2. 김남규. 2006. 오대산 국립공원내 임상별 토양미생물 및 고등 균류상에 대한 연구. 강원대학교. p 81.
  3. 김태영. 2006. 인천시 청량산의 고등균류상 조사 연구. 단국대학교. p. 38.
  4. 박영준. 2003. 치악산국립공원에서 발생하는 고등균류의 모니터링에 관한 연구. 강원대학교. p. 150.
  5. 이태수.이지열. 2000. 한국기록종 버섯 재정리목록. 임업연구원. p. 87.
  6. 장석기. 2007. 내장산국립공원의 고등균류 분포, 한국균학회지 35(1):11-27. https://doi.org/10.4489/KJM.2007.35.1.011
  7. 조덕현. 민준. 2005. 서울 남산의 균류 다양성과 균류자원. 한국자연보존연구지 3(1):111-141.
  8. Anderson, I. C., Bastias, B. A., Genney, D. R., Parkin, P. I. and Cairney, J. W. G. 2007. Basidiomycete fungal communities in Australian sclerophyll forest soil are altered by repeated prescribed burning. Mycol. Res. 111:482-286. https://doi.org/10.1016/j.mycres.2007.02.006
  9. Avis, P. J., McLaughlin, D. J., Dentinger, B. C. and Reich, P. B. 2003. Long-term increase in nitrogen supply alters above-and below-ground ectomycorrhizal communities and increases the dominance of Russula spp. in a temperate oak savanna. New Phytol. 160:239-253. https://doi.org/10.1046/j.1469-8137.2003.00865.x
  10. Baxter, J. W., Pickett, S. T. A., Carreiro, M. M. and Dighton, J. 1999. Ectomycorrhizal diversity and community structure in oak forest stands exposed to contrasting anthropogenic impacts. Can. J. Bot. 77:771-782.
  11. Diedhiou, A. G., Dupouey, J.-L., Bue, M., Dambrine, E., Lat, L. and Garbaye, J. 2010. The functional structure of ectomycorrhizal communities in an oak forest in central France witnesses ancient Gallo-Roman farming practices. Soil Biol. Biochem. 42:860-862. https://doi.org/10.1016/j.soilbio.2010.01.011
  12. Donk, M. 1964. A conspectus of the familes of Aphyllophorales, Rijksher-barium. Leiden.
  13. Eveling, D. W., Wilson, R. N., Gillespie, E. S. and Bataille, A. 1990. Environmental effects on basidioma counts over fourteen years in a forest area. Mycol. Res. 94:998-1002. https://doi.org/10.1016/S0953-7562(09)81320-8
  14. Ishida, T. A., Nara, K. and Hogetsu, T. 2007. Host effects on ectomycorrhizal fungal communities: insight from eight host species in mixed conifer-broadleaf forests. New Phytol. 174: 430-440. https://doi.org/10.1111/j.1469-8137.2007.02016.x
  15. Karen, O., Hogberg, N., Dahlberg, A., Grip, K. and Nylund, J. E. 1996. Influence of drought on ectomycorrhizal species composition- morphotype versus PCR identification. In: Azcon-Aguilar, C. and Barea, J. M. Eds. Mycorrhizas in Integrated Systems European Commission, Brussels. pp. 43-46.
  16. Lange, M. 1978. Fungus flora in August. Ten year observation in a Danish beech wood districts. Bot. Tidsskr. 73:21-54.
  17. Leake, J., Johnson, D., Donnelly, D., Muckle, G., Boddy, L. and Read, D. J. 2004. Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can. J. Bot. 82:1016-1045. https://doi.org/10.1139/b04-060
  18. Markkola, A. M., Aonen-Jonnarth, U., Roitto, M., Strmmer, R. and Hyvrinen, M. 2002. Shift in ectomycorrhizal community composition in Scots pine (Pinus sylvestris L.) seedling roots as a response to nickel deposition and removal of lichen cover. Environ. Pollut. 120:797-803. https://doi.org/10.1016/S0269-7491(02)00168-9
  19. Natarajan, K., Senthilarasu, G., Kumaresan, V. and Rivire, T. 2005. Diversity in ectomycorrhizal fungi of a dipterocarp forest in Western Ghats. Curr. Sci. 88(12):1893-1895.
  20. Rosenzweig, M. L. and Abramsky, Z. 1993. How are diversity and productivity related? In species diversity in ecological communities. pp. 52-65. Univ. of Chicago Press, Chicago, III.
  21. Simard, S. W., Durall, D. and Jones, M. 2002. Carbon and nutrient fluxes within and between mycorrhizal plants. In: van der Heijden M.G.A. Sanders IR (Eds.) Mycorrhizal Ecology. Springer. Berlin. pp. 33-74.
  22. Singer, R. 1986. The agaricales in modern taxonomy, 4th ed. Koeltz Scientific books. Koenigstein.
  23. Smith, S. E. and Read, D. J. 2008 Mycorrhizal Symbiosis 3 Edition London: Academic Press.
  24. Taylor, A. F. S., Martin, F. and Read, D. J. 2000. Fungal diversity in ectomycorrhizal communities of Norway spruce [Picea abies (L.) Karst] and beech (Fagus sylvatica L.) along North- South transects in Europe. pp. 343-365. In: Schulze E.D., ed. Carbon and nitrogen cycling in European forest ecosystemsecological studies.
  25. Twieg, B. D., Durall, D. M. and Simard, S. W. 2007. Ectomycorrhizal fungal succession in mixed temperate forests. New Phytol. 176:437-447. https://doi.org/10.1111/j.1469-8137.2007.02173.x
  26. Van der Heijden, M. G. A., Bardgett, R. D. and Van Straalen, N. M. 2008. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11:296-310. https://doi.org/10.1111/j.1461-0248.2007.01139.x

Cited by

  1. Characteristic evaluation of collected strains of Agaricus spp. based on ITS rDNA sequence vol.12, pp.4, 2014, https://doi.org/10.14480/JM.2014.12.4.244
  2. Distribution of Higher Fungi in Wolchulsan National Park vol.42, pp.1, 2014, https://doi.org/10.4489/KJM.2014.42.1.9
  3. Relationship between Climatic Factors and the Distribution of Higher Fungi in Byeonsanbando National Park, Korea vol.42, pp.1, 2014, https://doi.org/10.5941/MYCO.2014.42.1.27
  4. Distribution of Higher Fungi in Chungcheong Province, Republic of Korea vol.6, pp.3, 2013, https://doi.org/10.7229/jkn.2013.6.3.347