DOI QR코드

DOI QR Code

Evaluating the Soil Salinity of Reclaimed Wastewater Irrigation in Paddy Plots using the Soil-Water-Atmosphere-Plant Model and Water Management Response Indicators

하수처리수의 재이용에 따른 SWAP 모형과 물관리반응지수를 이용한 논에서의 토양염분 평가

  • Jang, Tae-Il (Department of Biological & Agricultural Engineering, University of Georgia, USA/Research Institute for Agricultural & Life Sciences, Seoul National University) ;
  • Hwang, Sye-Woon (Water Institute, University of Florida) ;
  • Jeong, Han-Seok (Rural Systems Engineering, College of Agricultural & Life Science, Seoul National University) ;
  • Kang, Moon-Seong (Rural Systems Engineering, Research Institute for Agricultural & Life Sciences, College of Agricultural & Life Science, Seoul National University) ;
  • Park, Seung-Woo (College of Agricultural & Life Science, Seoul National University)
  • Received : 2012.01.27
  • Accepted : 2012.03.13
  • Published : 2012.03.31

Abstract

본 연구에서는 하수재이용에 따른 논에서의 토양염분 변화를 추정하기 위하여 경기도 화성시 수원환경사업소 인근에 위치한 병점지구를 대상으로 수문순환과 작물성장과의 관계를 고려한 SWAP (Soil-Water-Atmosphere-Plant) 모형을 이용하여 평가하였다. 실험에 사용한 관개용수는 지하수 (TR#1), 하수처리장 방류수+여과+UV (TR#3)로 분류하여 모형에 사용하였다. 유입관개수의 EC (Electrical Conductivity)는 지하수 관개수인 TR#1이 다른 처리구에 비해 작았고, TR#3의 경우 0.442~0.698 dS $m^{-1}$의 범위를 보였다. 모형의 보정과 검정을 위해서 대상지구에 FDR (Frequency Domain Reflection)을 설치하여 토양수분함유량과 염분농도를 토심에 따라 일단위로 모니터링 하였다. 토심 (50, 100, 140 cm)에 따른 토양함수량의 RMSE는 검정기간 중 TR#1에서 0.003~0.064 $cm^3\;cm^{-3}$, TR#3에서 0.001 $cm^3\;cm^{-3}$ 범위를 보여 주었고, 토양염분의 보정기간 중 토심별 RMSE는 TR#1에서 0.018~0.037 dS $m^{-1}$, TR#3에서 0.004~0.014 dS $m^{-1}$ 범위를 보여 적용성이 있는 것으로 나타났다. 토양내의 염분수지 분석 결과, 토양에서의 염분저장량이 (-)로 나타나 토양내로 침출되는 것으로 나타났으며, WMRI (Water Management Response Indicators)을 이용한 분석 결과, 높은 침투능으로 인하여 토양에서의 염분 집적 영향은 낮은 것으로 평가되었다.

Keywords

References

  1. Abu-Sharar, T. M., 1996. Modification of hydraulic properties of a semiarid soil in relation to seasonal applications of sewage sludge and electrolyte-producing compounds. Soil Technology 9: 1-13. https://doi.org/10.1016/0933-3630(95)00027-5
  2. Aljaloud, A. A., G. Hussain, A. J. Alsaati, and S. Karimullah, 1993. Effects of wastewaters on plant growth and soil properties. Arid Soil Research and Rehabilitation 7: 173-179.
  3. Allen, R. G., L. S. Pereira, D. Raes, and M. Smith, 1998. Crop evapotranspiration. Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper No. 56, Rome, Italy.
  4. Angin, I., A. V. Yaganoglu, and M. Turan, 2005. Effects of long-term wastewater irrigation on soil properties. Journal of Sustainable Agriculture 26: 31. https://doi.org/10.1300/J064v26n03_05
  5. Bastiaanssen, W. G. M., R. Singh, S. Kumar, J. K. Schakel, and R. K. Jhorar, 1996. Analysis and recommendations for integrated on-farm water management in Haryana, India: a model approach. Report 118, DLO Winand Staring Center, Wageningen. 152 pp.
  6. Bond, W. J., 1998. Effluent irrigation - an environmental challenge for soil science. Australian Journal of Soil Research 36: 543-555. https://doi.org/10.1071/S98017
  7. Buckland, G. D., D. R. Bennett, D. E. Mikalson, Ed. Jong, and C. Chang, 2002. Soil salinization and sodification from alternate irrigations with saline-sodic water and simulated rain. Canadian Journal of Soil Science 82: 297-309. https://doi.org/10.4141/S01-080
  8. Chapman, H. D. and P. F. Pratt, 1961. Methods of analysis for soils, plants and waters. University of California: Division of Agricultural Sciences, CA.
  9. Doherty, J., L. Brebber and P. Whyte, 2004. PEST: Model independent parameter estimation: user manual 5th edtion. Australian Centre for Tropical Freshwater Research, James Cooke University, Townsville, Australia.
  10. Feddes, R. A., P. J. Kowalik, and H. Zaradny, 1978. Simulation of field water use and crop yield. Simulation Monographs, Pudoc, Wageningen, The Netherlands, 189 p.
  11. Govindarajan, S., N. K. Ambujam, and K. Karunakaran, 2008. Estimation of paddy water productivity (WP) using hydrological model: an experimental study. Paddy and Water Environment 6: 327-339.
  12. Hong, E. M., J. Y. Choi, W. H. Nam, and S. H. Yoo, 2011. Analysis of soil moisture recession characteristics in Conifer forest. Journal of the Korean Society of Agricultural Engineering 53:1-9 (in Korean). https://doi.org/10.5389/KSAE.2011.53.4.001
  13. IWMI, 2002. Urban Wastewater: A Valuable Resource for Agriculture: A Case Study from Haroonabad, Pakistan: Research Report 63: International Water Management Institute (IWMI): Colombo, Sri Lanka. 21.
  14. Jang, T. I., 2009. Environmental effects of reclaimed wastewater irrigation on paddy fields. Doctoral Dissertation, Seoul National University, Seoul, Korea (in Korean).
  15. Jang, T. I., H. K. Kim, C. H. Sung, E. J. Lee, and S. W. Park, 2012. Assessing nutrient losses of reclaimed wastewater irrigation in paddy fields for sustainable agriculture. Agricultural Water Management 104: 235- 243. https://doi.org/10.1016/j.agwat.2011.12.022
  16. Jang, T. I., S. B. Lee, C. H. Sung, H. P. Lee, and S. W.Park, 2010. Safe application of reclaimed water reuse for agriculture in Korea. Paddy and Water Environment 8: 227-233. https://doi.org/10.1007/s10333-010-0203-9
  17. Jang, T. I., S. W. Park, and H. K. Kim, 2008. Environmental effects analysis of a wastewater reuse system for agriculture in Korea. Water Science and Technology: WS 8: 37-42.
  18. Jeong, H. S., C. H. Seong, T. I. Jang, K. W. Jung, M. S. Kang, and S. W. Park, 2011. Effects of reclaimed wastewater irrigation on paddy rice yields and fertilizer reduction using the DSSAT Model. Journal of the Korean Society of Agricultural Engineers 53: 67-74 (in Korean). https://doi.org/10.5389/KSAE.2011.53.4.067
  19. Jung, K. W., 2011. Effects of reclaimed wastewater irrigation on paddy rice growth and yield. Mater thesis, Seoul National University, Seoul, Korea (in Korean).
  20. Kang, M. S., S. M. Kim, S. W. Park, J. J. Lee, and K. H. Yoo, 2007. Assessment of reclaimed wastewater irrigation impacts on water quality, soil, and rice cultivation in paddy fields. Journal of Environmental Science and Health Part A 42: 439-445. https://doi.org/10.1080/10934520601187633
  21. Kroes, J. G. and J. C. van Dam (eds), 2003. Reference Manual SWAP version 3.03. Alterra Green World Research, Alterra report 773, ISSN 1566-7197. Wageningen University and Research Centre, Wageningen, Netherlands.
  22. Lehrsch, G. A., C. W. Robbins, and M. J. Brown, 2008. Whey utilization in furrow irrigation: effects on aggregate stability and erosion. Bioresource Technology 99: 8458-8463. https://doi.org/10.1016/j.biortech.2008.02.050
  23. Maeng, S. K., K. H. Ahn, K. P. Kim, K. G. Song, and K. Y. Park, 2006. Compressible synthetic dual-medium filtration of wastewater effluents for water reuse. Water Practice and Technology 1: doi10.2166/wpt.2006.050.
  24. MLTM, 2006. Water Vision 2020 (2006 National Water Resources Plan Update). Ministry of Land, Transportation and Maritime Affaris (MLTM). Kyeonggi-do, Korea. Available at: www.waterplan.go.kr. Accessed 25 August 2011 (in Korean).
  25. MOE, 2005. Recommended Water Quality Guidelines for Wastewater Reuse. Ministry of Environment (MOE). Gyeonggi-do, Korea (in Korean).
  26. Molden, D. J. and T. K. Gates, 1990. Performance measures for evaluation irrigation water-delivery systems. Journal of Irrigation and Drainage Engineering 116: 804-823. https://doi.org/10.1061/(ASCE)0733-9437(1990)116:6(804)
  27. Muyen, Z., G. A. Moore, and R. J. Wrigley, 2011. Soil salinity and sodicity effects of wastewater irrigation in South East Australia. Agricultural Water Management 99: 33-41. https://doi.org/10.1016/j.agwat.2011.07.021
  28. Robbins, C. W., and G. A. Lehrsch, 1992. Effects of acidic cottage cheese whey on chemical and physical properties of a sodic soil. Arid Soil Research and Rehabilitation 6: 127-134. https://doi.org/10.1080/15324989209381305
  29. Singh, R., J. C. van Dam, and R. A. Feddes. 2006. Water productivity analysis of irrigated crops in Sirsa district, India. Agricultural Water Management 82: 253- 278. https://doi.org/10.1016/j.agwat.2005.07.027
  30. Spitters, C. J. T., H. van Keulen, and D. W. G. van Kraalingen, 1989. A simple and universal crop growth simulator: SUCROS87. In: R. Rabbinge, S. A. Ward and H. H. van Laar (Eds.). Simulation and systems management in crop protection. Simulation Monographs. Wageningen, Pudoc, The Netherlands, 147-181.
  31. Stevens, D. P., M. J. McLaughlin, and M. K. Smart, 2003. Effects of long-term irrigation with reclaimed water on soils of the Northern Adelaide Plains, South Australia. Australian Journal of Soil Research 41: 933- 948. https://doi.org/10.1071/SR02049
  32. Supit, I., A. A. Hooijer, and C.A. van Diepen (Eds.), 1994. System description of the WOFOST 6.0 Crop Growth Simulation Model implemented in CGMS. Volume 1: Theory and algorithms. European commission, Luxembourg. 146 pp.
  33. Tuong, T. P. and B. A. M. Bouman, 2003. Rice production in water-scarce environments. In J. Kijne, R. Barker and D. Molden (Eds.), Water productivity in agriculture: limits and opportunities for improvement, CABI press, Wallingford, UK.
  34. van Dam J. C., and R. S. Malik, 2003. Water productivity of irrigated crops in Sirsa district, India. Integration of remote sensing, crop and soil models and geographical information systems. WATPRO final report, including CD-ROM. ISBN 90-6464-864-6.
  35. van Dam, J. C., 2000. Field-scale water flow and solute transport. SWAP model concepts, parameter estimation and case studies. Wageningen University, Netherlands.
  36. van Dam, J.C., P. Groenendijk, R. F. A. Hendriks, and J. P. Kroes, 2008. Advances of Modeling Water Flow in Variably Saturated Soils with SWAP. Vadose Zone Journal 7: 640-653. https://doi.org/10.2136/vzj2007.0060
  37. van Dam, J. C., J. Huygen, J. G. Wesseling, R. A. Feddes, P. Kabat, P. E. V. van Walsum, P. Groenendijk, and C. A. van Diepen. 1997. Theory of SWAP version 2.0. Simulation of water flow, solute transport and plant growth in the Soil. Water. Air. Plant environment. Technical Doc. 45. Alterra, Wageningen, the Netherlands.