DOI QR코드

DOI QR Code

An Implicit Integration Method for Joint Coordinate Subsystem Synthesis Method

조인트 좌표계를 이용한 부분시스템 합성방법의 내재적 적분기법

  • Jo, Jun-Youn (Graduate school of Mechanical.Mechanical Design.Mechatronics Engineering, Chungnam Nat'l Univ.) ;
  • Kim, Myoung-Ho (Graduate school of Mechanical.Mechanical Design.Mechatronics Engineering, Chungnam Nat'l Univ.) ;
  • Kim, Sung-Soo (Dept. of Mechatronics Engineering, Chungnam Nat'l Univ.)
  • 조준연 (충남대학교 기계.기계설계.메카트로닉스공학과) ;
  • 김명호 (충남대학교 기계.기계설계.메카트로닉스공학과) ;
  • 김성수 (충남대학교 메카트로닉스공학과)
  • Received : 2011.12.12
  • Accepted : 2012.01.19
  • Published : 2012.04.01

Abstract

To analyze a multibody system, this paper proposes an implicit numerical integration method for joint coordinates subsystem synthesis method. To verify the proposed method, a multibody model for an unmanned robot vehicle, which consists of six identical independent suspension systems, is developed. The symbolic method is applied to compute the system Jacobian matrix for the implicit integration method. The proposed method is also verified by performing rough terrain run-over simulation in comparison with the conventional implicit integration method. In addition, to evaluate the efficiency of the proposed method, the CPU time obtained by using this method is compared with that obtained by using the conventional implicit method.

본 논문에서는 효율적인 다물체 시스템의 동역학 해석을 위해 조인트 좌표계 기반의 부분시스템 합성방법을 위한 내재적 적분기법을 개발하였다. 부분시스템 합성방법의 내재적 적분기법을 검증하기 위해, 동일 구조를 갖는 6 개의 독립적인 현가 부분시스템으로 이루어진 무인 로봇 차량에 적용하였다. 내재적 적분기법의 복잡한 시스템 자코비언을 효율적으로 생성하기 위해 기호연산법을 도입하였다. 제안한 방법의 검증을 위해 험지주행 시뮬레이션을 수행하였으며, 일반적인 내재적 적분기법 모델과 그 결과를 비교하였다. 또한 효율성을 확인하기 위해 해석 시간을 비교하였다.

Keywords

References

  1. Kim, S. S., 2002, "A Subsystem Synthesis Method for Efficient Vehicle Multibody Dynamics," Multibody System Dynamics, Vol. 7, pp. 189-207. https://doi.org/10.1023/A:1014457111573
  2. Haug, E. J., Negrut, D. and Iancu, M., 1997, "A State-Space-Based Implicit Integration Algorithm for Differential-Algebraic Equations of Multibody Dynamics," Mechanics of Structures and Machines, Vol. 25, No. 3, pp. 311-334. https://doi.org/10.1080/08905459708905292
  3. Negrut, D., Rampalli, R. and Ottarssom, G., 2005, "On the Use of the HHT Method in the Context of Index 3 Differential Algebraic Equations of Multibody Dynamics," ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, pp. 1-12.
  4. Tsai, F.F. and Haug, E. J., 1989, "Automated Methods for High Speed Simulation of Multibody Dynamics Systems," Technical Report R-47, Center for Computer Aided Design, The University of Iowa.
  5. Haug, E. J. and Yen, J., 1992, "Implicit Numerical Integration of Constrained Equations of Motion Via Generalized Coordinate Partitioning," ASME Journal of Mechanical Design, Vol. 114, pp. 296-304. https://doi.org/10.1115/1.2916946
  6. Haug, E. J., Negrut, D. and Iancu, M., 1997, "A State-Space-Based Implicit Integration Algorithm for Differential-Algebraic Equations of Multibody Dynamics," Mechanics of Structures and Machines, 25(3), pp. 311-334. https://doi.org/10.1080/08905459708905292
  7. Rudranarayan, M. M., Kishor, D. B. and Kurt, S. A., 2007, "A Divide-and-Conquer Direct Differentiation Approach for Multibody System Sensitivity Analysis," Structural and Multidisciplinary Optimization, Vol. 35, No. 5, pp. 413-429. https://doi.org/10.1007/s00158-007-0142-2
  8. Cuadrado, J., Dopico, D., Barreiro, A. and Delgado, E., 2009, "Real-Time State Observers Based on Multibody Models and the Extended Kalman Filter," Journal of Mechanical Science and Technology, Vol. 23, No. 4, pp. 894-900. https://doi.org/10.1007/s12206-009-0308-5
  9. CADSI, 1993, DADS User's Manual.
  10. MSC.software Inc., 2005, ADAMS 2005 manual.
  11. Maplesoft, 2010, Maple 14 the Essential Tool for Mathematics and Modeling User Manual.