DOI QR코드

DOI QR Code

저온열원 활용을 위한 암모니아-물 재생 랭킨사이클의 엑서지 해석

Exergy Analysis of Regenerative Ammonia-Water Rankine Cycle for Use of Low-Temperature Heat Source

  • 김경훈 (금오공과대학교 기계공학과) ;
  • 고형종 (금오공과대학교 기계공학과) ;
  • 김세웅 (금오공과대학교 기계공학과)
  • Kim, Kyoung-Hoon (Department of Mechanical Engineering, Kumoh National Institute of Technology) ;
  • Ko, Hyung-Jong (Department of Mechanical Engineering, Kumoh National Institute of Technology) ;
  • Kim, Se-Woong (Department of Mechanical Engineering, Kumoh National Institute of Technology)
  • 투고 : 2012.01.25
  • 심사 : 2012.02.24
  • 발행 : 2012.02.28

초록

Rankine cycle using ammonia-water mixture as a working fluid has attracted much attention, since it may be a very useful device to extract power from low-temperature heat source. In this work, the thermodynamic performance of regenerative ammonia-water Rankine cycle is thoroughly investigated based on the second law of thermodynamics and exergy analysis, when the energy source is low-temperature heat source in the form of sensible energy. In analyzing the power cycle, several key system parameters such as ammonia mass concentration in the mixture and turbine inlet pressure are studied to examine their effects on the system performance including exergy destructions or anergies of system components, efficiencies based on the first and second laws of thermodynamics. The results show that as the ammonia concentration increases, exergy exhaust increases but exergy destruction at the heat exchanger increases. The second-law efficiency has an optimum value with respect to the ammonia concentration.

키워드

참고문헌

  1. A. Bejan, G. Tsatsaronis and M. Moran : "Thermal design and optimization", John Wiley & Sons, 1996.
  2. N. Lior and N. Zhang : "Energy, exergy, and second law performance criteria", Energy, Vol. 32, 2007, pp. 281-296. https://doi.org/10.1016/j.energy.2006.01.019
  3. G. Tsatsaronis : "Definition and nomenclature in exergy analysis and exergoeconomics", Energy, Vol. 32, 2007, pp. 249-253. https://doi.org/10.1016/j.energy.2006.07.002
  4. K. H. Kim and H. Perez-Blanco : "Potential of regenerative gas-turbine systems with high-fogging compression", Applied Energy, Vol. 84, 2007, pp. 16-28. https://doi.org/10.1016/j.apenergy.2006.04.008
  5. H. Perez-Blanco, K. H. Kim and S. Ream : "Evaporatively-cooled compression using a high-pressure refrigerant", Applied Energy, Vol. 84, 2007, pp. 1028-1043. https://doi.org/10.1016/j.apenergy.2007.02.013
  6. K. H. Kim, H. J. Ko and H. Perez-Blanco : "Analytical modeling of wet compression of gas turbine systems", Applied Thermal Engineering, Vol. 31, 2011, pp. 834-840. https://doi.org/10.1016/j.applthermaleng.2010.11.002
  7. K. H. Kim, H. J. Ko, K. Kim and H. Perez-Blanco : "Analysis of water droplet evaporation in a gas turbine inlet fogging process", Applied Thermal Engineering, Vol. 33-34, 2012, pp. 62-69. https://doi.org/10.1016/j.applthermaleng.2011.09.012
  8. K. H. Kim, H. J. Ko and H. Perez-Blanco : "Exergy analysis of gas-turbine systems with high-fogging compression", Int. J. Exergy, Vol. 8, 2011, pp. 16-32. https://doi.org/10.1504/IJEX.2011.037212
  9. 김경훈, 김세웅, 고형종 : "저온폐열 활용을 위한 암모니아-물 혼합물을 작업유체로 하는 랭킨사이클에 관한 연구", 한국수소 및 신에너지학회 논문집, Vol. 21, No. 6, 2010, pp. 570-579.
  10. 김경훈, 고형종, 김세웅 : "저온열원 활용을 위한 암모니아-물 혼합물을 작동유체로 하는 칼리나 사이클의 성능 해석", 한국수소 및 신에너지학회 논문집, Vol. 22, No. 1, 2011, pp. 109-117.
  11. 김경훈, 한철호 : "저온 열원 활용을 위한 암모니아-물 재생 랭킨사이클의 성능 해석", 한국태양에너지학회 논문집, Vol. 31, No. 1, 2011, pp. 15-22. https://doi.org/10.7836/kses.2011.31.1.015
  12. 김경훈 : "암모니아-물 작동유체의 부분증발유동을 적용한 재생 랭킨사이클에 관한 연구", 설비공학논문집, Vol. 23, No. 3, 2011, pp. 223-230. https://doi.org/10.6110/KJACR.2011.23.3.223
  13. 김경훈 : "저온 열원 활용을 위한 흡수 발전/냉각 복합사이클의 성능 해석", 설비공학논문집, Vol. 23, No. 6, 2011, pp. 413-420.
  14. O. M. Ibrahim and S. A. Klein : "Absorption power cycles", Energy, Vol. 21, 1996, pp. 21-27. https://doi.org/10.1016/0360-5442(95)00083-6
  15. O. M. Ibrahim : "Design consideration for ammoniawater Rankine cycle", Energy, Vol. 21, 1996, pp. 835-841. https://doi.org/10.1016/0360-5442(96)00046-1
  16. C. Zamfirescu and I. Dincer : "Thermo-dynamic analysis of a novel ammonia-water trilateral Rankine cycle", Thermochimica Acta, Vol. 477, 2008, pp. 7-15. https://doi.org/10.1016/j.tca.2008.08.002
  17. P. Roy, M. Desilets, N. Galanis, H. Nesreddine and E. Cayer : "Thermodynamic analysis of a power cycle using a low-temperature source and a binary $NH_3-H_2O$ mixture as working fluid", Int. J. Thermal Sci., Vol. 49, 2010, pp. 48-58. https://doi.org/10.1016/j.ijthermalsci.2009.05.014
  18. W. R. Wagner, C. Zamfirescu and I. Dincer : "Thermodynamic performance assessment of an ammonia-water Rankine cycle for power and heat production", Energy Convers. mgmt., Vol. 51, 2010, pp. 2501-2509. https://doi.org/10.1016/j.enconman.2010.05.014
  19. K. H. Kim, C. H. Han and K. Kim : "Effects of ammonia-water concentration on the performance of ammonia-water based power cycles", Thermochimica Acta, Vol. 530, 2012, pp. 7-16. https://doi.org/10.1016/j.tca.2011.11.028
  20. K. H. Kim and C. H. Han : "Thermodynamic performance of ammonia-water cycle for power and refrigeration cogeneration", App. Math. Information Sciences, 2012, in press.
  21. F. Xu and D. Y. Goswami : "Thermodynamic properties of ammonia-water mixtures for powercycle application", Energy, Vol. 24, 1999, pp. 525-536. https://doi.org/10.1016/S0360-5442(99)00007-9

피인용 문헌

  1. 저온 열원 및 LNG 냉열을 이용하는 복합 발전 사이클의 성능 해석 vol.23, pp.4, 2012, https://doi.org/10.7316/khnes.2012.23.4.382