DOI QR코드

DOI QR Code

Preparation and Characterization for Carbon Composite Gas Diffusion Layer on Polymer Electrolyte Membrane Fuel Cells

고분자 전해질 연료전지에서 탄소복합 기체확산층의 제조와 특성분석

  • Shim, Joong-Pyo (Department of Nano & Chemical Engineering, Kunsan National University) ;
  • Han, Choon-Soo (Department of Nano & Chemical Engineering, Kunsan National University) ;
  • Sun, Ho-Jung (Department of Material Science & Engineering, Kunsan National University) ;
  • Park, Gyung-Se (Department of Chemistry, Kunsan National University) ;
  • Lee, Ji-Jung (Fuel Cell Regional Innovation Center, Woosuk University) ;
  • Lee, Hong-Ki (Fuel Cell Regional Innovation Center, Woosuk University)
  • 심중표 (군산대학교 나노화학공학과) ;
  • 한춘수 (군산대학교 나노화학공학과) ;
  • 선호정 (군산대학교 신소재공학과) ;
  • 박경세 (군산대학교 화학과) ;
  • 이지정 (우석대학교 수소연료전지 및 응용부품기술 지역혁신센터) ;
  • 이홍기 (우석대학교 수소연료전지 및 응용부품기술 지역혁신센터)
  • Received : 2012.01.27
  • Accepted : 2012.02.24
  • Published : 2012.02.28

Abstract

Gas diffusion layers (GDLs) of carbon composite type in polymer electrolyte fuel cells were prepared by simple and cheap manufacturing process. To obtain the carbon composite GDLs, carbon black with polymer binder was mixed in solvent, rolled to make sheet, and finally heat-treated at $340^{\circ}C$. The performance of fuel cell using composite GDLs was changed by PTFE content. The physical properties of composite GDLs for pore, conductivity and air permeability were analyzed to compare with the variation of fuel cell performance. The conductivity of composite GDLs was very similar to carbon paper as commercial GDL but pore properties and air flux were considerably different. The porosity, PTFE content and conductivity for composite GDLs did not have an influence on the cell performance much. The increase of pore diameter and air flux led to enhance cell performance.

Keywords

References

  1. EG&G Technical Services, Inc., "Fuel Cell Handbook", U.S. Department of Energy, West Virginia, p1-12, 2004
  2. S. Litster, G. McLean, "PEM fuel cell electrodes", J. Power Sources, Vol. 130, 2004, p. 61. https://doi.org/10.1016/j.jpowsour.2003.12.055
  3. S. Park, J.-W. Lee, B.N. Popov, "Effect of carbon loading in microporous layer on PEM fuel cell performance", J. Power Sources, Vol. 163, 2006, p. 357. https://doi.org/10.1016/j.jpowsour.2006.09.020
  4. G.-G. Park, Y.-J. Sohn, T.-H. Yang, Y.-G. Yoon, W.-Y. Lee, C.-S. Kim, "Effect of PTFE contents in the gas diffusion media on the performance of PEMFC", J. Power Sources, Vol. 131, 2004, p. 182. https://doi.org/10.1016/j.jpowsour.2003.12.037
  5. J. Lobato, P. Canizares, M.A. Rodrigo, C. Ruiz-Lopez, J.J. Linares, "Influence of the Teflon loading in the gas diffusion layer of PBI-based PEM fuel cells", J. Appl. Electrochem., Vol. 38, 2008, p. 793. https://doi.org/10.1007/s10800-008-9512-8
  6. J.P. Feser, A.K. Prasad, S.G. Advani, "Experimental characterization of in-plane permeability of gas diffusion layers", J. Power Sources, Vol. 162, 2006, p. 1226. https://doi.org/10.1016/j.jpowsour.2006.07.058
  7. J. Ge, A. Higier, H. Liu, "Effect of gas diffusion layer compression on PEM fuel cell performance", J. Power Sources, Vol. 159, 2006, p. 922. https://doi.org/10.1016/j.jpowsour.2005.11.069
  8. S. Escribano, J.-F. Blachot, J. Etheve, A. Morin, R. Mosdale, "Characterization of PEMFCs gas diffusion layers properties", J. Power Sources, Vol. 156, 2006, p. 8. https://doi.org/10.1016/j.jpowsour.2005.08.013
  9. E.-J. Ahn, G.-G. Park, Y.-G. Yoon, J.-S. Park, W.-Y. Lee, C.-S. Kim, "Effect of clamping pressure on surface properties of gas diffusion layer in PEFCs", J. Kor. Electrochem. Soc, Vol. 10, 2007, p. 306. https://doi.org/10.5229/JKES.2007.10.4.306
  10. S. Gamburzev, A.J. Appleby, "Recent progress in performance improvement of the proton exchange membrane fuel cell (PEMFC)", J. Power Sources, Vol. 107, 2002, p. 5. https://doi.org/10.1016/S0378-7753(01)00970-3
  11. E. Antolini, R.R. Passor, E.A. Ticianelli, "Effects of the carbon powder characteristics in the cathode gas diffusion layer on the performance of polymer electrolyte fuel cells", J. Power Sources, Vol. 109, 2002 p. 477. https://doi.org/10.1016/S0378-7753(02)00112-X
  12. M. Hayashi, T. Sugitani, Y. Asano, US Patent 2005/0173244 A1, 2005.
  13. Y.W. Chen-Yang, T.F. Hung, J. Huang, F.L. Yang, "Novel single-layer gas diffusion layer based on PTFE/carbon black composite for proton exchange membrane fuel cell", J. Power Sources Vol. 173, 2007, p. 183. https://doi.org/10.1016/j.jpowsour.2007.04.080
  14. F.A.L. Dullien, Porous Media: Fluid Transport and Pore Structure, Academic Press, New York, 1992.
  15. J. Geertsma, "Estimating the coefficient of inertial resistance in fluid flow through porous media", Soc. Pet. Eng. J. Vol. 10, 1974, p. 445.
  16. K. Ahn, C. Yang, S. Lee, "A Study on Electrochemical Characteristics of MEA with Nafion Ionomer Content in Catalyst Layer for PEMFC", Trans. Kor. Hydrogen New Energy Soc, Vol. 21, 2010, p. 540.
  17. D. Weng, J.S. Wainright, U. Landau, R.F. Savinell, "Electro-osmotic Drag Coefficient of Water and Methanol in Polymer Electrolytes at Elevated Temperatures", J. Electrochem. Soc, Vol. 143, 1996, p. 1260. https://doi.org/10.1149/1.1836626
  18. D. Antonioli, M. Laus, K. Sparnacci, S. Deregibus, V. Kapeliouchko, G. Palamone, T. Poggio, G. Zuccheri, R. Passeri, "Thermal and DMA characterization of PTFE-PMMA nanocomposites from core-shell nanoparticles", Macromol. Symp. Vol. 296, 2010, p. 197. https://doi.org/10.1002/masy.201051029
  19. "Thermalgravimetric analysis", TA Instruments.
  20. Thermal Analysis Application No HB 451, Mettler Toledo TA Application Handbook Elastomers, Vol. 2.
  21. Z. Qi, A. Kaufman, "Improvement of water management by a microporous sublayer for PEM fuel cells", J. Power Sources, Vol. 109, 2002, p. 38. https://doi.org/10.1016/S0378-7753(02)00058-7
  22. J.-J. Lee, I.-T. Kim, Y. Zhang, H.-K. Lee, J. Shim, "Comparison of Cell Performance with Physical Properties of Gas Diffusion Layers in PEMFCs", J. Kor. Electrochem. Soc, Vol. 10, 2007, p. 270. https://doi.org/10.5229/JKES.2007.10.4.270
  23. J. Rouquerol, D. Avnir, C.W. Fairbridge, D.H. Everett, J.H. Haynes, N. Pernicone, J.D.F. Ramsay, K.S.W. Sing, K.K. Unger, "Recommendations for the characterization of porous solids", Pure. Appl. Chem., Vol. 66, 1994, p. 1739. https://doi.org/10.1351/pac199466081739
  24. M. Watanabe, M. Tomikawa, S. Motoo, "Experimental analysis of the reaction layer structure in a gas diffusion electrode", J. Electroanal. Chem., Vol. 195, 1985, p. 81. https://doi.org/10.1016/0022-0728(85)80007-3
  25. M. Uchida, Y. Aoyama, N. Eda, A. Ohta, "Investigation of the Microstructure in the Catalyst Layer and Effects of Both Perfluorosulfonate Ionomer and PTFE-Loaded Carbon on the Catalyst Layer of Polymer Electrolyte Fuel Cells", J. Electrochem. Soc., Vol. 142, 1995, p. 4143. https://doi.org/10.1149/1.2048477
  26. R.H. Perry, D.W. Green, "Perry's Chemical Engineers' Handbook", 7thed., McGraw-Hill, 1997, p5.
  27. H. Jeon, T. Cho, W. Choi, "Water Repellent Coating of Carbon Cloth with Different Size PTFE and Gas Permeabilities", Trans. Kor. Hydrogen New Energy Soc, Vol. 21, 2010, p. 313.
  28. J.T. Gostick, M.W. Fowler, M.D. Pritzker, M.A. Ioannidis, L.M. Behra, "In-plane and throughplane gas permeability of carbon fiber electrode backing layers", J. Power Sources, Vol. 162, 2006, p. 228. https://doi.org/10.1016/j.jpowsour.2006.06.096
  29. M. Prasanna, H.Y. Ha, E.A. Cho, S.-A. Hong, I.-H. Oh, "Influence of cathode gas diffusion media on the performance of the PEMFCs", J. Power Sources, Vol. 131, 2004, p. 147. https://doi.org/10.1016/j.jpowsour.2004.01.030
  30. L. Giorgi, E. Antolini, A. Pozio, E. Passalacqua, "Influence of the PTFE content in the diffusion layer of low-Pt loading electrodes for polymer electrolyte fuel cells", Electrochim. Acta, Vol. 43, 1998, p. 3675. https://doi.org/10.1016/S0013-4686(98)00125-X
  31. C. Lim, C.Y. Wang, "Effects of hydrophobic polymer content in GDL on power performance of a PEM fuel cell", Electrochim. Acta, Vol. 49, 2004, p. 4149. https://doi.org/10.1016/j.electacta.2004.04.009

Cited by

  1. Perovskite Electrodes for Oxygen Reduction and Evolution in Alkaline Solution vol.27, pp.3, 2016, https://doi.org/10.7316/KHNES.2016.27.3.276
  2. Bifunctional Electrode for Oxygen Reduction and Evolution Reactions in an Alkaline Solution vol.27, pp.6, 2016, https://doi.org/10.7316/KHNES.2016.27.6.677
  3. Characterization of Milled Carbon Fibers-filled Pitch-based Carbon Paper for Gas Diffusion Layer vol.29, pp.5, 2016, https://doi.org/10.7234/composres.2016.29.5.262
  4. Performance of gas diffusion layer from coconut waste for proton exchange membrane fuel cell vol.817, pp.None, 2012, https://doi.org/10.1088/1742-6596/817/1/012010
  5. Material processing of oil palm empty fruit bunches for use as raw material of conductive carbon paper vol.817, pp.None, 2012, https://doi.org/10.1088/1742-6596/817/1/012060
  6. Effect of Pore Former on Carbon Black-Polytetrafluoroethylene‐Based Monolithic Gas Diffusion Media for Proton Exchange Membrane Fuel Cells vol.8, pp.7, 2020, https://doi.org/10.1002/ente.202000119