Honam Mathematical J. **34** (2012), No. 1, pp. 093–101 http://dx.doi.org/10.5831/HMJ.2012.34.1.93

THE NUMBER OF POINTS ON ELLIPTIC CURVES $E_A^0: y^2 = x^3 + Ax$ OVER \mathbb{F}_p MOD 24

HWASIN PARK, SOONHO YOU, DAEYEOUL KIM AND MINHEE KIM

Abstract. Let E_A^B denote the elliptic curve $E_A^B : y^2 = x^3 + Ax + B$. In this paper, we calculate the number of points on elliptic curves $E_A^0 : y^2 = x^3 + Ax$ over $\mathbb{F}_p \mod 24$. For example, if $p \equiv 1 \pmod{24}$ is a prime, $3t^2 \equiv 1 \pmod{p}$ and A(-1+2t) is a quartic residue modulo p, then the number of points in $E_A^0 : y^2 = x^3 + Ax$ is congruent to 0 modulo 24.

1. Introduction

Let p > 3 be a prime, and let \mathbb{F}_p be the finite field of p elements. From now on we let E_A^B denote the elliptic curve $y^2 = x^3 + Ax + B$ over \mathbb{F}_p where $A, B \in \mathbb{F}_p$. The set of points $(x, y) \in \mathbb{F}_p \times \mathbb{F}_p$ together with a point O at infinity is called the set of points of E_A^B in \mathbb{F}_p and is denoted by $E_A^B(\mathbb{F}_p)$. And let $\#E_A^B(\mathbb{F}_p)$ be the cardinality of the set $E_A^B(\mathbb{F}_p)$. For a more detailed information about elliptic curves in general, see [Si]. It has been always interesting to look for the number of points over a given field \mathbb{F}_p . In [S], three algorithms to find the number of points on an elliptic curve over a finite field are given. Also in [DISC], [DSC], [ISDC2] the number of rational points on Frey elliptic curves $E : y^2 = x^3 - n^2x$ and $E : y^2 = x^3 + a^3$ are found.

In 2003, H. Park, D. Kim and H. Lee calculated the number of points on elliptic curves $E_A^0: y^2 = x^3 + Ax$ over $\mathbb{F}_p \mod 8$ ([PKL], [ISDBC]). The purpose of this paper is to give a straightforward calculation of the number mod 24 of points on elliptic curves over a finite field.

In this article, we derive a type of generalization of their results ([PKL], [ISDBC]) by means of elliptic curves mod 24.

Received December 29, 2011. Accepted February 7, 2012.

²⁰⁰⁰ Mathematics Subject Classification. 11A15, 11G07.

Key words and phrases. elliptic curves.

Hwasin Park, Soonho You, Daeyeoul Kim and Minhee Kim

2. The number of points on elliptic curves E_A^0 : $y^2 = x^3 + Ax$ over $\mathbb{F}_p \mod 24$

Let p be a prime, and let t be an element of $\mathbb{F}_p^* = \mathbb{F}_p - \{0\}$ such that $3t^2 \equiv 1 \pmod{p}$. Then such an element t exists when $p \equiv 1, 11 \pmod{12}$. Now, for simplicity we set

- q_4 : quartic residue in \mathbb{F}_p ,
- q_2 : quadratic residue but quartic non-residue in \mathbb{F}_p ,
- $q_1 :$ quadratic non-residue in \mathbb{F}_p and
- $\left(\frac{a}{p}\right)_3 = 1$ if $x^3 \equiv a \pmod{p}$ is solvable.

Theorem 2.1. 1. If $p \equiv 1, 11 \pmod{12}$ is a prime and $3t^2 \equiv 1 \pmod{p}$, then we get the following table.

p	A	$-1 \pm 2t$	$A(-1\pm 2t)$	$\#E^0_A(\mathbb{F}_p)$
	q_4	q_4	q_4	$0 \pmod{24}$
	q_4	q_2	q_2	$8 \ or \ 16 \pmod{24}$
	q_4	q_1	q_1	$8 \ or \ 16 \pmod{24}$
	q_2	q_2	q_4	$12 \pmod{24}$
$1 \pmod{24}$	q_2	q_4	q_2	$4 \text{ or } 20 \pmod{24}$
	q_2	q_1	q_1	$4 \text{ or } 20 \pmod{24}$
	q_1	q_1	q_4	$18 \pmod{24}$
	q_1	q_1	q_2	$2 \text{ or } 10 \pmod{24}$
	q_1	q_4	q_1	$2 \text{ or } 10 \pmod{24}$
	q_1	q_2	q_1	$2 \text{ or } 10 \pmod{24}$
$11 \pmod{24}$			all	$12 \pmod{24}$
	q_4	q_4	q_4	$12 \pmod{24}$
	q_4	q_2	q_2	$4 \text{ or } 20 \pmod{24}$
	q_4	q_1	q_1	$4 \text{ or } 20 \pmod{24}$
	q_2	q_2	q_4	$0 \pmod{24}$
$13 \pmod{24}$	q_2	q_4	q_2	$8 \ or \ 16 \pmod{24}$
	q_2	q_1	q_1	$8 \ or \ 16 \pmod{24}$
	q_1	q_1	q_4	$18 \pmod{24}$
	q_1	q_1	q_2	$2 \text{ or } 10 \pmod{24}$
	q_1	q_4	q_1	$2 \text{ or } 10 \pmod{24}$
	q_1	q_2	q_1	$2 \text{ or } 10 \pmod{24}$
$23 \pmod{24}$			all	$0 \pmod{24}$

2. If $p \equiv 5,7 \pmod{12}$ is a prime, then we get the following table.

94

p	A	$\#E^0_A(\mathbb{F}_p)$
	q_4	$4 \text{ or } 20 \pmod{24}$
$5 \pmod{24}$	q_2	$8 \text{ or } 16 \pmod{24}$
	q_1	$2 or 10 \pmod{24}$
$7 \pmod{24}$	all	$8 \pmod{24}$
	q_4	$8 \text{ or } 16 \pmod{24}$
$17 \pmod{24}$	q_2	$4 \text{ or } 20 \pmod{24}$
	q_1	$2 \text{ or } 10 \pmod{24}$
$19 \pmod{24}$	all	$20 \pmod{24}$

The number of points on elliptic curves $E_A^0: y^2 = x^3 + Ax$ over $\mathbb{F}_p \mod 24$ 95

To prove this theorem, we need the following propositions and lemmas.

Proposition 2.2 ([K] p.145, [Si] p.323).

- 1. Let $p \neq 2, 3$. Then E_A^B is supersingular if and only if $\#E_A^B = p+1$. 2. If $p \equiv 3 \pmod{4}$ is a prime and $E_A^0 : y^2 = x^3 + Ax$ is an elliptic
- curve over \mathbb{F}_p , then $\#E_A^0 = p + 1$. 3. If $p \equiv 2 \pmod{3}$ is a prime and $E_B^B : y^2 = x^3 + B$ is an elliptic curve over \mathbb{F}_p , then $\#E_0^B = p + 1$.

By Proposition 2.2 (2), if $p \equiv 7,11 \pmod{12}$ is a prime and E_A^0 : $y^2 = x^3 + Ax$ is an elliptic curve over \mathbb{F}_p then $\#E_A^0 = p + 1$. So, we consider the elliptic curve $E_A^0: y^2 = x^3 + Ax$ when $p \equiv 1,5 \pmod{12}$.

Proposition 2.3 ([KKP]). Let $E_A^B : y^2 = x^3 + Ax + B$ be an elliptic curve over \mathbb{F}_p and P = (x, y) be a point in $E_A^B(\mathbb{F}_p)$ which is not a point at infinity, where $E_A^B(\mathbb{F}_p)$ is the group of points on E. Then the followings are equivalent

- 1. P = (x, y) is a point of order 3 in $E_A^B(\mathbb{F}_p)$. 2. $3x^4 + 6Ax^2 + 12Bx A^2$ is congruent to 0 to modulo p.

We denoted by $N_p(f(x))$ the number of solutions of the congruence equation $f(x) \equiv 0 \pmod{p}$. Let (:) be the Legendre symbol and let $D = a_1^2 a_2^2 - 4a_2^3 - 4a_1^3 a_3 - 27a_3^2 + 18a_1a_2a_3$ be the discriminant of the cubic polynomial $x^3 + a_1x^2 + a_2x + a_3$.

Lemma 2.4. If p > 3 is a prime, $a_1, a_2, a_3 \in \mathbb{Z}$ and $p \nmid D$, then

$$N_p(x^3 + a_1x^2 + a_2x + a_3) = \begin{cases} 0 \text{ or } 3, & \text{if } \left(\frac{D}{p}\right) = 1\\ 1, & \text{if } \left(\frac{D}{p}\right) = -1. \end{cases}$$

Hwasin Park, Soonho You, Daeyeoul Kim and Minhee Kim

Proof. See Cohen [C, pp.198-199], Dickson [D] or Stickelberger [St]. \Box

Proposition 2.5 ([IR]). Let p and q be odd primes. Then the followings are satisfied.

1. If
$$p \equiv 1 \pmod{4}$$
, then $\left(\frac{-1}{p}\right) = 1$.
2. If $p \equiv \pm 1 \pmod{12}$, then $\left(\frac{3}{p}\right) = 1$

Proposition 2.6 ([ISDBC],[PKL]). If p is a prime, then when $p \equiv 1 \pmod{8}$,

$$\#E_A^0 = \begin{cases} 0 \pmod{8} & \text{if } A \text{ is a quartic residue in } \mathbb{F}_p \\ 4 \pmod{8} & \text{if } A \text{ is quadratic residue but quartic non-residue in } \mathbb{F}_p \\ 2 \pmod{8} & \text{if } A \text{ is quadratic non-residue in } \mathbb{F}_p \end{cases}$$

and when $p \equiv 5 \pmod{8}$,

 $\#E_A^0 = \begin{cases} 4 \pmod{8} & \text{if A is a quartic residue in } \mathbb{F}_p \\ 0 \pmod{8} & \text{if A is quadratic residue but quartic non-residue in } \mathbb{F}_p \\ 2 \pmod{8} & \text{if A is quadratic non-residue in } \mathbb{F}_p. \end{cases}$

Example 2.7. Let p = 5. Then we get the following.

A	q_i	$#E^0_A(\mathbb{F}_5)$
1	q_4	4
2	q_1	2
3	q_1	10
4	q_2	8

Now, we will give the results concerning $\#E_A^0$ over \mathbb{F}_p modulo 3.

Lemma 2.8. Let $E_A^0: y^2 = x^3 + Ax$ be an elliptic curve over \mathbb{F}_p . If $\left(\frac{3}{p}\right) = -1$, then $\# E_A^0 \not\equiv 0 \pmod{3}$.

Proof. Assume that $\#E_A^0 \equiv 0 \pmod{3}$. Then there exists a point $P = (x, y) \in E_A^0(\mathbb{F}_p)$ satisfying 3P = O. By Proposition 2.3, we deduce that $f(x) = 3x^4 + 6Ax^2 - A^2 \equiv 0 \pmod{p}$, and hence $3(x^2 + A)^2 \equiv 4A^2 \pmod{p}$. We easily check that $\left(\frac{(x^2 + A)^2}{p}\right) = \left(\frac{4}{p}\right) = \left(\frac{A^2}{p}\right) = 1$, and $\left(\frac{3}{p}\right) = -1$ by assumption. It is a contradiction. So, $\#E_A^0 \not\equiv 0 \pmod{3}$.

Corollary 2.9. Let $E_A^0: y^2 = x^3 + Ax$ be an elliptic curve over \mathbb{F}_p . If $p \equiv 5,7 \pmod{12}$ are primes, then $\#E_A^0 \not\equiv 0 \pmod{3}$.

96

The number of points on elliptic curves $E_A^0: y^2 = x^3 + Ax$ over $\mathbb{F}_p \mod 24$ 97

Proof. Since $\left(\frac{3}{5}\right) = \left(\frac{3}{7}\right) = -1$, we derive that $\#E_A^0 \not\equiv 0 \pmod{3}$, by Lemma 2.8.

Example 2.10. Let p = 7. If A = 1, then $\#E_1^0 : y^2 = x^3 + x = 16 \not\equiv 0 \pmod{3}$. If A = 2, then $\#E_2^0 : y^2 = x^3 + 2x = 20 \not\equiv 0 \pmod{3}$.

If $p \equiv 5,7 \pmod{12}$, then $\left(\frac{3}{p}\right) = -1$ and $3t^2 \not\equiv 1 \pmod{p}$. Now, we will consider the cases when $p \equiv 1, 11 \pmod{12}$.

Lemma 2.11. Let $3t^2 \equiv 1 \pmod{p}$ with $t \in \mathbb{F}_p$. Then

$$\left(\frac{-1+2t}{p}\right) = \begin{cases} \left(\frac{-1-2t}{p}\right) & \text{if } p \equiv 1 \pmod{12} \\ -\left(\frac{-1-2t}{p}\right) & \text{if } p \equiv 11 \pmod{12}. \end{cases}$$

Proof. Since $\left(\frac{-1+2t}{p}\right)\left(\frac{-1-2t}{p}\right) = \left(\frac{1-4t^2}{p}\right) = \left(\frac{1-3t^2-t^2}{p}\right) = \left(\frac{-t^2}{p}\right) = \left(\frac{-1}{p}\right)\left(\frac{t^2}{p}\right) = \left(\frac{-1}{p}\right)$, we get the result by Proposition 2.5 (1).

Lemma 2.12. Let $p \equiv 1 \pmod{12}$ be a prime and let $3t^2 \equiv 1 \pmod{p}$ with $t \in \mathbb{F}_p^*$. Then $\#E_A^0: y^2 = x^3 + Ax \equiv 0 \pmod{3}$ if and only if $-A \pm 2tA$ are quartic residues in \mathbb{F}_p .

Proof. Assume that $-A \pm 2tA$ are quartic residues in \mathbb{F}_p .

Let $x^2 \equiv -A \pm 2tA \pmod{p}$, where x is a quadratic residue in \mathbb{F}_p . Also, we have $x^2 + A \equiv \pm 2tA \pmod{p}$ and $(x^2 + A)^2 \equiv t^2(2A)^2 \pmod{p}$. It follows from $3t^2 \equiv 1 \pmod{p}$ and $3(x^2 + A)^2 \equiv 4A^2 \pmod{p}$ that

(2.0.1) $3x^4 + 6Ax^2 - A^2 \equiv 0 \pmod{p}.$

Here, we put $f(x) = 3x^4 + 6Ax^2 - A^2$. Since $3t^2 \equiv 1 \pmod{p}$, $\left(\frac{2t}{p}\right)\left(\frac{2t-1}{p}\right) = \left(\frac{4t^2-2t}{p}\right) = \left(\frac{t^2-2t+3t^2}{p}\right) = \left(\frac{t^2-2t+1}{p}\right) = \left(\frac{(t-1)^2}{p}\right) = 1$. That is, $\left(\frac{2t}{p}\right) = \left(\frac{2t-1}{p}\right)$. Similarly, $\left(\frac{-2t}{p}\right) = \left(\frac{-2t-1}{p}\right)$. Since $x^2 \equiv -A \pm 2tA \pmod{p}$, $\left(\frac{-1\pm 2t}{p}\right) = \left(\frac{A}{p}\right)$. By Lemma 2.11 we know that $\left(\frac{-1\pm 2t}{p}\right) = \left(\frac{-2t-1}{p}\right) = \left(\frac{2t}{p}\right) = \left(\frac{-2t}{p}\right) = \left(\frac{A}{p}\right)$. So we deduce that (2.0.2) $\left(\frac{\pm 2tA}{p}\right) = 1$. Therefore, there exists a point P(x, y) in $E_A^0: y^2 = x^3 + Ax = x(x^2 + A) = x(\pm 2tA)$ such that $f(x) \equiv 0 \pmod{p}$, because x and $\pm 2tA$ are quadratic residues in \mathbb{F}_p . That is, $\#E_A^0: y^2 = x^3 + Ax \equiv 0 \pmod{3}$ by Proposition 2.3.

Conversely, we assume that $\#E_A^0: y^2 = x^3 + Ax \equiv 0 \pmod{3}$. We first consider the case where $-A \pm 2tA$ are quartic non-residues in \mathbb{F}_p . Since $\#E_A^0: y^2 = x^3 + Ax \equiv 0 \pmod{3}, 3x^4 + 6Ax^2 - A^2 \equiv 0 \pmod{p}$, by Proposition 2.3. Then, $x^2 \equiv -A \pm 2tA \pmod{p}$ by (2.0.1).

Now, if $-A \pm 2tA$ are quadratic non-residues in \mathbb{F}_p , then there does not exist a point P(x, y) of $E_A^0: y^2 = x^3 + Ax$ such that $f(x) \equiv 0 \pmod{p}$. Finally, if $-A \pm 2tA$ are quadratic residues but quartic non-residues in \mathbb{F}_p , then x is a quadratic non-residue. And since $\pm 2tA$ are quadratic residues in \mathbb{F}_p by (2.0.2), $x(\pm 2tA)$ are quadratic non-residues in \mathbb{F}_p . Consequently, there does not exist a point P(x, y) of $E_A^0: y^2 = x^3 + Ax$ such that $f(x) \equiv 0 \pmod{p}$. Therefore, if $-A \pm 2tA$ are quartic nonresidues in \mathbb{F}_p , then $\# E_A^0: y^2 = x^3 + Ax \neq 0 \pmod{3}$.

Example 2.13. Let p = 13. Then roots of $3t^2 \equiv 1 \pmod{13}$ are $t = \pm 3$ and $-1 \pm 2t = 5$, 6. Then we get the following table.

A	$-A \pm 2tA$	$#E^0_A(\mathbb{F}_{13})$
7, 8, 11	q_4	18
2, 5, 6	q_2	10
1, 3, 9	q_1	20
4, 10, 12	q_1	8

And let p = 37. Then roots of $3t^2 \equiv 1 \pmod{37}$ are $t = \pm 5$ and $-1 \pm 2t = 9$, 26. Then we get the following table.

A	$-A \pm 2tA$	$\#E^0_A(\mathbb{F}_{37})$
1, 7, 9, 10, 12, 16, 26, 33, 34	q_4	36
3, 4, 11, 21, 25, 27, 28, 30, 36	q_2	40
5, 6, 8, 13, 17, 19, 22, 23, 35	q_1	26
2, 14, 15, 18, 20, 24, 29, 31, 32	q_1	50

Corollary 2.14. Let $p \equiv 1 \pmod{12}$ be a prime and let $3t^2 \equiv 1 \pmod{p}$ with $t \in \mathbb{F}_p^*$. And let g be a primitive root modulo p.

- 1. If $-1 \pm 2t$ is a quartic residue in \mathbb{F}_p , then $\#E_1^0: y^2 = x^3 + x \equiv 0 \pmod{3}$ and $\#E_{g^2}^0: y^2 = x^3 + g^2x \not\equiv 0 \pmod{3}$.
- 2. If $-1 \pm 2t$ is a quadratic residue but quartic non-residue in \mathbb{F}_p , then

98

The number of points on elliptic curves $E_A^0: y^2 = x^3 + Ax$ over $\mathbb{F}_p \mod 24$ 99

 $#E_1^0: y^2 = x^3 + x \not\equiv 0 \pmod{3}$ and $#E_{g^2}^0: y^2 = x^3 + g^2 x \equiv 0 \pmod{3}$.

Proof. First, let $-1 \pm 2t$ be a quartic residue in \mathbb{F}_p . Since A = 1 is a quartic residue in \mathbb{F}_p , $1 \cdot (-1 \pm 2t) = -1 \pm 2t$ is a quartic residue. By Lemma 2.12, $\#E_1^0: y^2 = x^3 + x \equiv 0 \pmod{3}$. And $g^2 \cdot (-1 \pm 2t)$ is a quadratic residue but quartic non-residue in \mathbb{F}_p . So $\#E_{g^2}^0: y^2 = x^3 + g^2x \neq 0 \pmod{3}$.

Secondly, let $-1 \pm 2t$ be a quadratic residue but quartic non-residue in \mathbb{F}_p . Since $1 \cdot (-1 \pm 2t) = -1 \pm 2t$ is a quadratic residue but quartic non-residue in \mathbb{F}_p , $\#E_1^0: y^2 = x^3 + x \neq 0 \pmod{3}$. And $g^2 \cdot (-1 \pm 2t)$ is a quartic residue in \mathbb{F}_p . So $\#E_{g^2}^0: y^2 = x^3 + g^2x \equiv 0 \pmod{3}$. \Box

Proof of Theorem 2.1

By Proposition 2.2, Proposition 2.6, Corollary 2.9 and Lemma 2.12, the proof of Theorem 2.1 is complete.

Example 2.15. Let p = 7, then $\#E_A^0(\mathbb{F}_7) = 8$ for all $A \in \mathbb{F}_7$ is as the following table.

Α	$E^{0}_{A}(F_{7})$
1	O, (0,0), (1,3), (1,4), (3,3), (3,4), (5,2), (5,5)
2	O, (0, 0), (4, 3), (4, 4), (5, 3), (5, 4), (6, 2), (6, 5)
3	O, (0,0), (1,2), (1,5), (2,0), (3,1), (3,6), (5,0)
4	O, (0, 0), (2, 3), (2, 4), (3, 2), (3, 5), (6, 3), (6, 4)
5	O, (0,0), (2,2), (2,5), (3,0), (4,0), (6,1), (6,6)
6	O, (0, 0), (1, 0), (4, 2), (4, 5), (5, 1), (5, 6), (6, 0)

References

- [C] H. Cohen, A Course in Computational Algebraic Number Theory, Grad. Texts in Math., 138, Springer-verlag, Berlin, 1993, 198-199.
- [D] L. E. Dickson, Criteria for the irreducibility of functions in a finite field, Bull. Amer. Math. Soc. 13(1906), 1-8.
- [DISC] M. Demirci, Y. N. Ikikardes, G. Soydan and I. N. Cangul, Frey Elliptic Curves $E: y^2 = x^3 n^2 x$ on finite field \mathbb{F}_p where $p \equiv 1 \pmod{4}$ is prime, to be printed.
- [DSC] M. Demirci, G. Soydan and I. N. Cangul, Rational points on Elliptic Curves $E: y^2 = x^3 + a^3$ in \mathbb{F}_p where $p \equiv 1 \pmod{4}$ is prime, Rocky Mountain Journal of Mathematics, 37, no 5, 2007.
- [IR] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer-Verlag, 1981.
- [ISDBC] I. Inam, G. Soydan, M. Demirci, O. Bizim and I. N. Cangul, Corrigendum on "The Number of Points on Elliptic Curves $E: y^2 = x^3 + cx$ over $\mathbb{F}_p \mod \delta$ ", Commun. Korean Math. Soc. 22 (2007), no. 2, 207-208.

Hwasin Park, Soonho You, Daeyeoul Kim and Minhee Kim

100

- [ISDC] N. Y. Ikikardes, G. Soydan, M. Demirci and I. N. Cangul, Classification of the Bachet Elliptic Curves $y^2 = x^3 + a^3$ in \mathbb{F}_p , where $p \equiv 1 \pmod{6}$ is Prime, Int. J. Math. Sci. (WASET) 1 (2007), no. 4, 239-241.
- [ISDC2] N. Y. Ikikardes, G. Soydan, M. Demirci and I. N. Cangul, *Rational points* on Frey Elliptic Curves $E: y^2 = x^3 - n^2x$, Adv. Stud. Contemp. Math. (Kyungshang) 14 (2007), no. 1, 69-76.
- [K] A. W. Knapp, *Elliptic curves*, Princeton University Press, New Jersey 1992.
- [KKP] D. Kim, J. K. Koo and Y. K. Park, On the elliptic curve modulo p, Journal of Number Theory 128(2008), 945-953.
- [PKL] H. Park, D. Kim and E. Lee, The numbers of points elliptic curves $E: y^2 = x^3 + cx$ over $\mathbb{F}_p \mod 8$, Commun. Korean Math. Soc. 18 (2003), 31-37.
- [S] R. Schoof, Counting points on elliptic curves over finite fields, Journal de Theorie des Nomvres de Bordeaux, 7(1995), 219-254.
- [Si] J. H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, 106. Springer-Verlag, New York, 1992.
- [St] L. Stickelberger, Uber eine neue Eigenschaft der Diskriminanten algebraischer Zahlkorper, in: Verh. I. Internat. Math. Kongress, Zurich, 1987, 182-193.

H. S. Park Department of Mathematics, Chonbuk National University, Chonju 561-756, Korea. E-mail: park@jbnu.ac.kr

S. H. You Department of Mathematics, Chonbuk National University, Chonju 561-756, Korea. E-mail: m2zzang@hanmail.net

D. Y. Kim
Division of Fusion and Convergence of Mathematical Sciences, National Institute for Mathematical Sciences,
Dajeon 305-390, Korea.
E-mail: daeyeoul@nims.re.kr

M. H. Kim Department of Mathematics, Chonbuk National University, The number of points on elliptic curves $E_A^0: y^2 = x^3 + Ax$ over $\mathbb{F}_p \mod 24$ 101

Chonju 561-756, Korea. E-mail: minabout@hanmail.net