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THE NUMBER OF POINTS ON ELLIPTIC CURVES

E0
A : y2 = x3 + Ax OVER Fp MOD 24

Hwasin Park, Soonho You, Daeyeoul Kim and Minhee Kim

Abstract. Let EB
A denote the elliptic curve EB

A : y2 = x3+Ax+B.
In this paper, we calculate the number of points on elliptic curves
E0

A : y2 = x3 +Ax over Fp mod 24. For example, if p ≡ 1 (mod 24)
is a prime, 3t2 ≡ 1 (mod p) and A(−1 + 2t) is a quartic residue
modulo p, then the number of points in E0

A : y2 = x3 + Ax is
congruent to 0 modulo 24.

1. Introduction

Let p > 3 be a prime, and let Fp be the finite field of p elements.
From now on we let EB

A denote the elliptic curve y2 = x3 +Ax+B over
Fp where A,B ∈ Fp. The set of points (x, y) ∈ Fp ×Fp together with a
point O at infinity is called the set of points of EB

A in Fp and is denoted
by EB

A (Fp). And let #EB
A (Fp) be the cardinality of the set EB

A (Fp). For
a more detailed information about elliptic curves in general, see [Si].
It has been always interesting to look for the number of points over a
given field Fp. In [S], three algorithms to find the number of points on an
elliptic curve over a finite field are given. Also in [DISC], [DSC], [ISDC2]
the number of rational points on Frey elliptic curves E : y2 = x3 − n2x
and E : y2 = x3 + a3 are found.

In 2003, H. Park, D. Kim and H. Lee calculated the number of points
on elliptic curves E0

A : y2 = x3 + Ax over Fp mod 8 ([PKL], [ISDBC]).
The purpose of this paper is to give a straightforward calculation of the
number mod 24 of points on elliptic curves over a finite field.

In this article, we derive a type of generalization of their results
([PKL], [ISDBC]) by means of elliptic curves mod 24.
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2. The number of points on elliptic curves E0
A :

y2 = x3 + Ax over Fp mod 24

Let p be a prime, and let t be an element of F∗
p = Fp − {0} such

that 3t2 ≡ 1 (mod p). Then such an element t exists when p ≡ 1, 11
(mod 12). Now, for simplicity we set

q4: quartic residue in Fp,

q2: quadratic residue but quartic non-residue in Fp,

q1: quadratic non-residue in Fp and(
a
p

)
3

= 1 if x3 ≡ a (mod p) is solvable.

Theorem 2.1. 1. If p ≡ 1, 11 (mod 12) is a prime and 3t2 ≡ 1
(mod p), then we get the following table.

p A −1± 2t A(−1± 2t) #E0
A(Fp)

q4 q4 q4 0 (mod 24)
q4 q2 q2 8 or 16 (mod 24)
q4 q1 q1 8 or 16 (mod 24)
q2 q2 q4 12 (mod 24)

1 (mod 24) q2 q4 q2 4 or 20 (mod 24)
q2 q1 q1 4 or 20 (mod 24)
q1 q1 q4 18 (mod 24)
q1 q1 q2 2 or 10 (mod 24)
q1 q4 q1 2 or 10 (mod 24)
q1 q2 q1 2 or 10 (mod 24)

11 (mod 24) all 12 (mod 24)
q4 q4 q4 12 (mod 24)
q4 q2 q2 4 or 20 (mod 24)
q4 q1 q1 4 or 20 (mod 24)
q2 q2 q4 0 (mod 24)

13 (mod 24) q2 q4 q2 8 or 16 (mod 24)
q2 q1 q1 8 or 16 (mod 24)
q1 q1 q4 18 (mod 24)
q1 q1 q2 2 or 10 (mod 24)
q1 q4 q1 2 or 10 (mod 24)
q1 q2 q1 2 or 10 (mod 24)

23 (mod 24) all 0 (mod 24)

2. If p ≡ 5, 7 (mod 12) is a prime, then we get the following table.
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p A #E0
A(Fp)

q4 4 or 20 (mod 24)
5 (mod 24) q2 8 or 16 (mod 24)

q1 2 or 10 (mod 24)
7 (mod 24) all 8 (mod 24)

q4 8 or 16 (mod 24)
17 (mod 24) q2 4 or 20 (mod 24)

q1 2 or 10 (mod 24)
19 (mod 24) all 20 (mod 24)

To prove this theorem, we need the following propositions and lem-
mas.

Proposition 2.2 ([K] p.145, [Si] p.323).

1. Let p 6= 2, 3. Then EB
A is supersingular if and only if #EB

A = p+1.
2. If p ≡ 3 (mod 4) is a prime and E0

A : y2 = x3 + Ax is an elliptic
curve over Fp, then #E0

A = p + 1.
3. If p ≡ 2 (mod 3) is a prime and EB

0 : y2 = x3 + B is an elliptic
curve over Fp, then #EB

0 = p + 1.

By Proposition 2.2 (2), if p ≡ 7, 11 (mod 12) is a prime and E0
A :

y2 = x3 + Ax is an elliptic curve over Fp then #E0
A = p + 1. So, we

consider the elliptic curve E0
A : y2 = x3 + Ax when p ≡ 1, 5 (mod 12).

Proposition 2.3 ([KKP]). Let EB
A : y2 = x3 +Ax+B be an elliptic

curve over Fp and P = (x, y) be a point in EB
A (Fp) which is not a point at

infinity, where EB
A (Fp) is the group of points on E. Then the followings

are equivalent

1. P = (x, y) is a point of order 3 in EB
A (Fp).

2. 3x4 + 6Ax2 + 12Bx−A2 is congruent to 0 to modulo p.

We denoted by Np(f(x)) the number of solutions of the congruence
equation f(x) ≡ 0 (mod p). Let

(
.
.

)
be the Legendre symbol and let

D = a21a
2
2 − 4a32 − 4a31a3 − 27a23 + 18a1a2a3 be the discriminant of the

cubic polynomial x3 + a1x
2 + a2x + a3.

Lemma 2.4. If p > 3 is a prime, a1, a2, a3 ∈ Z and p - D, then

Np(x
3 + a1x

2 + a2x + a3) =

 0 or 3, if
(
D
p

)
= 1

1, if
(
D
p

)
= −1.
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Proof. See Cohen [C, pp.198-199], Dickson [D] or Stickelberger [St].

Proposition 2.5 ([IR]). Let p and q be odd primes. Then the fol-
lowings are satisfied.

1. If p ≡ 1 (mod 4), then
(
−1
p

)
= 1.

2. If p ≡ ±1 (mod 12), then
(
3
p

)
= 1.

Proposition 2.6 ([ISDBC],[PKL]). If p is a prime, then
when p ≡ 1 (mod 8),

#E0
A =

 0 (mod 8) if A is a quartic residue in Fp

4 (mod 8) if A is quadratic residue but quartic non-residue in Fp

2 (mod 8) if A is quadratic non-residue in Fp

and when p ≡ 5 (mod 8),

#E0
A =

 4 (mod 8) if A is a quartic residue in Fp

0 (mod 8) if A is quadratic residue but quartic non-residue in Fp

2 (mod 8) if A is quadratic non-residue in Fp.

Example 2.7. Let p = 5. Then we get the following.

A qi #E0
A(F5)

1 q4 4
2 q1 2
3 q1 10
4 q2 8

Now, we will give the results concerning #E0
A over Fp modulo 3.

Lemma 2.8. Let E0
A : y2 = x3 + Ax be an elliptic curve over Fp. If(

3
p

)
= −1, then #E0

A 6≡ 0 (mod 3).

Proof. Assume that #E0
A ≡ 0 (mod 3). Then there exists a point

P = (x, y) ∈ E0
A(Fp) satisfying 3P = O. By Proposition 2.3, we deduce

that f(x) = 3x4 + 6Ax2−A2 ≡ 0 (mod p), and hence 3(x2 +A)2 ≡ 4A2

(mod p). We easily check that
(
(x2+A)2

p

)
=
(
4
p

)
=
(
A2

p

)
= 1, and(

3
p

)
= −1 by assumption. It is a contradiction. So, #E0

A 6≡ 0 (mod 3).

Corollary 2.9. Let E0
A : y2 = x3 + Ax be an elliptic curve over Fp.

If p ≡ 5, 7 (mod 12) are primes, then #E0
A 6≡ 0 (mod 3).
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Proof. Since
(
3
5

)
=
(
3
7

)
= −1, we derive that #E0

A 6≡ 0 (mod 3), by
Lemma 2.8.

Example 2.10. Let p = 7.
If A = 1, then #E0

1 : y2 = x3 + x = 16 6≡ 0 (mod 3).
If A = 2, then #E0

2 : y2 = x3 + 2x = 20 6≡ 0 (mod 3).

If p ≡ 5, 7 (mod 12), then
(
3
p

)
= −1 and 3t2 6≡ 1 (mod p). Now, we

will consider the cases when p ≡ 1, 11 (mod 12).

Lemma 2.11. Let 3t2 ≡ 1 (mod p) with t ∈ Fp. Then

(
−1 + 2t

p

)
=


(
−1−2t

p

)
if p ≡ 1 (mod 12)

−
(
−1−2t

p

)
if p ≡ 11 (mod 12).

Proof. Since
(
−1+2t

p

)(
−1−2t

p

)
=
(
1−4t2

p

)
=
(
1−3t2−t2

p

)
=
(
−t2

p

)
=(

−1
p

)(
t2

p

)
=
(
−1
p

)
, we get the result by Proposition 2.5 (1).

Lemma 2.12. Let p ≡ 1 (mod 12) be a prime and let 3t2 ≡ 1
(mod p) with t ∈ F∗

p. Then #E0
A : y2 = x3 + Ax ≡ 0 (mod 3) if and

only if −A± 2tA are quartic residues in Fp.

Proof. Assume that −A± 2tA are quartic residues in Fp.
Let x2 ≡ −A ± 2tA (mod p), where x is a quadratic residue in Fp.

Also, we have x2+A ≡ ±2tA (mod p) and (x2+A)2 ≡ t2(2A)2 (mod p).
It follows from 3t2 ≡ 1 (mod p) and 3(x2 + A)2 ≡ 4A2 (mod p) that

3x4 + 6Ax2 −A2 ≡ 0 (mod p).(2.0.1)

Here, we put f(x) = 3x4 + 6Ax2 − A2. Since 3t2 ≡ 1 (mod p),(
2t
p

)(
2t−1
p

)
=
(
4t2−2t

p

)
=
(
t2−2t+3t2

p

)
=
(
t2−2t+1

p

)
=
(
(t−1)2

p

)
= 1.

That is,
(
2t
p

)
=
(
2t−1
p

)
. Similarly,

(
−2t
p

)
=
(
−2t−1

p

)
. Since x2 ≡

−A ± 2tA (mod p),
(
−1±2t

p

)
=
(
A
p

)
. By Lemma 2.11 we know that(

−1+2t
p

)
=
(
−2t−1

p

)
=
(
2t
p

)
=
(
−2t
p

)
=
(
A
p

)
. So we deduce that(

±2tA

p

)
= 1.(2.0.2)
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Therefore, there exists a point P (x, y) in E0
A : y2 = x3 + Ax = x(x2+

A) = x(±2tA) such that f(x) ≡ 0 (mod p), because x and ±2tA are
quadratic residues in Fp. That is, #E0

A : y2 = x3 + Ax ≡ 0 (mod 3) by
Proposition 2.3.

Conversely, we assume that #E0
A : y2 = x3 + Ax ≡ 0 (mod 3). We

first consider the case where −A ± 2tA are quartic non-residues in Fp.
Since #E0

A : y2 = x3 + Ax ≡ 0 (mod 3), 3x4 + 6Ax2−A2 ≡ 0 (mod p),
by Proposition 2.3. Then, x2 ≡ −A± 2tA (mod p) by (2.0.1).

Now, if−A±2tA are quadratic non-residues in Fp, then there does not
exist a point P (x, y) of E0

A : y2 = x3 + Ax such that f(x) ≡ 0 (mod p).
Finally, if −A ± 2tA are quadratic residues but quartic non-residues in
Fp, then x is a quadratic non-residue. And since ±2tA are quadratic
residues in Fp by (2.0.2), x(±2tA) are quadratic non-residues in Fp.
Consequently, there does not exist a point P (x, y) of E0

A : y2 = x3 +Ax
such that f(x) ≡ 0 (mod p). Therefore, if −A ± 2tA are quartic non-
residues in Fp, then #E0

A : y2 = x3 + Ax 6≡ 0 (mod 3).

Example 2.13. Let p = 13. Then roots of 3t2 ≡ 1 (mod 13) are
t = ±3 and −1± 2t = 5, 6. Then we get the following table.

A −A± 2tA #E0
A(F13)

7, 8, 11 q4 18
2, 5, 6 q2 10
1, 3, 9 q1 20

4, 10, 12 q1 8

And let p = 37. Then roots of 3t2 ≡ 1 (mod 37) are t = ±5 and
−1± 2t = 9, 26. Then we get the following table.

A −A± 2tA #E0
A(F37)

1, 7, 9, 10, 12, 16, 26, 33, 34 q4 36
3, 4, 11, 21, 25, 27, 28, 30, 36 q2 40
5, 6, 8, 13, 17, 19, 22, 23, 35 q1 26

2, 14, 15, 18, 20, 24, 29, 31, 32 q1 50

Corollary 2.14. Let p ≡ 1 (mod 12) be a prime and let 3t2 ≡ 1
(mod p) with t ∈ F∗

p. And let g be a primitive root modulo p.

1. If −1± 2t is a quartic residue in Fp, then
#E0

1 : y2 = x3 + x ≡ 0 (mod 3) and #E0
g2 : y2 = x3 + g2x 6≡ 0

(mod 3).
2. If −1 ± 2t is a quadratic residue but quartic non-residue in Fp,

then
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#E0
1 : y2 = x3 + x 6≡ 0 (mod 3) and #E0

g2 : y2 = x3 + g2x ≡ 0

(mod 3).

Proof. First, let −1± 2t be a quartic residue in Fp. Since A = 1 is a
quartic residue in Fp, 1 · (−1 ± 2t) = −1 ± 2t is a quartic residue. By
Lemma 2.12, #E0

1 : y2 = x3 + x ≡ 0 (mod 3). And g2·(−1±2t) is a qua-
dratic residue but quartic non-residue in Fp. So #E0

g2 : y2 = x3 + g2x 6≡
0 (mod 3).

Secondly, let −1± 2t be a quadratic residue but quartic non-residue
in Fp. Since 1 · (−1 ± 2t) = −1 ± 2t is a quadratic residue but quartic
non-residue in Fp, #E0

1 : y2 = x3 + x 6≡ 0 (mod 3). And g2 · (−1 ± 2t)
is a quartic residue in Fp. So #E0

g2 : y2 = x3 + g2x ≡ 0 (mod 3).

Proof of Theorem 2.1
By Proposition 2.2, Proposition 2.6, Corollary 2.9 and Lemma 2.12,

the proof of Theorem 2.1 is complete.

Example 2.15. Let p = 7, then #E0
A(F7) = 8 for all A ∈ F7 is as

the following table.

A E0
A(F7)

1 O, (0, 0), (1, 3), (1, 4), (3, 3), (3, 4), (5, 2), (5, 5)
2 O, (0, 0), (4, 3), (4, 4), (5, 3), (5, 4), (6, 2), (6, 5)
3 O, (0, 0), (1, 2), (1, 5), (2, 0), (3, 1), (3, 6), (5, 0)
4 O, (0, 0), (2, 3), (2, 4), (3, 2), (3, 5), (6, 3), (6, 4)
5 O, (0, 0), (2, 2), (2, 5), (3, 0), (4, 0), (6, 1), (6, 6)
6 O, (0, 0), (1, 0), (4, 2), (4, 5), (5, 1), (5, 6), (6, 0)
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