DOI QR코드

DOI QR Code

Anti-inflammatory activity of Camellia japonica oil

  • Received : 2011.10.20
  • Accepted : 2011.12.03
  • Published : 2012.03.31

Abstract

Camellia japonica oil (CJ oil) has been used traditionally in East Asia to nourish and soothe the skin as well as help restore the elasticity of skin. CJ oil has also been used on all types of bleeding instances. However, little is known about its anti-inflammatory effects. Therefore, the anti-inflammatory effects of CJ oil and its mechanisms of action were investigated. CJ oil inhibited LPS-induced production of NO, $PGE_2$, and TNF-${\alpha}$ in RAW264.7 cells. In addition, expression of COX-2 and iNOS genes was reduced. To evaluate the mechanism of the anti-inflammatory activity of CJ oil, LPS-induced activation of AP-1 and NF-${\kappa}B$ promoters was found to be significantly reduced by CJ oil. LPS-induced phosphorylation of $I{\kappa}B{\alpha}$, ERK, p38, and JNK was also attenuated. Our results indicate that CJ oil exerts anti-inflammatory effects by downregulating the expression of iNOS and COX-2 genes through inhibition of NF-${\kappa}B$ and AP-1 signaling.

Keywords

References

  1. Kiritoshi, S., Nishikawa, T., Sonoda, K., Kukidome, D., Senokuchi, T., Matsuo, T., Matsumura, T., Tokunaga, H., Brownlee, M. and Araki, E. (2003) Reactive oxygen species from mitochondria induce cyclooxygenase-2 gene expression in human mesangial cells: potential role in diabetic nephropathy. Diabetes 52, 2570-2577. https://doi.org/10.2337/diabetes.52.10.2570
  2. MacMicking, J., Xie, Q. W. and Nathan, C. (1997) Nitric oxide and macrophage function. Annu. Rev. Immunol. 15, 323-350. https://doi.org/10.1146/annurev.immunol.15.1.323
  3. Kleinert, H., Pautz, A., Linker, K. and Schwarz, P. M. (2004) Regulation of the expression of inducible nitric oxide synthase. Eur. J. Pharmacol. 500, 255-266. https://doi.org/10.1016/j.ejphar.2004.07.030
  4. Korhonen, R., Lahti, A., Kankaanranta, H. and Moilanen, E. (2005) Nitric oxide production and signaling in inflammation. Curr. Drug Targets Inflamm. Allergy 4, 471-479. https://doi.org/10.2174/1568010054526359
  5. Kharitonov, S. A., Yates, D., Robbins, R. A., Logan-Sinclair, R., Shinebourne, E. A. and Barnes, P. J. (1994) Increased nitric oxide in exhaled air of asthmatic patients. Lancet 343, 133-135. https://doi.org/10.1016/S0140-6736(94)90931-8
  6. Ramsay, R. G., Ciznadija, D., Vanevski, M. and Mantamadiotis, T. (2003) Transcriptional regulation of cyclo-oxygenase expression: three pillars of control. Int. J. Immunopath. Ph. 16, 59-67.
  7. Chen, F., Castranova, V., Shi, X. and Demers, L. M. (1999) New insights into the role of nuclear factor- kappaB, a ubiquitous transcription factor in the initiation of diseases. Clin. Chem. 45, 7-17.
  8. Xie, Q. W., Kashiwabara, Y. and Nathan, C. (1994) Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. J. Biol. Chem. 269, 4705-4708.
  9. Haefner, B. (2002) NF-kappa B: arresting a major culprit in cancer. Drug Discovery Today 7, 653-663. https://doi.org/10.1016/S1359-6446(02)02309-7
  10. Pahl, H. L. (1999) Activators and target genes of Rel/NFkappaB transcription factors. Oncogene 18, 6853-6866. https://doi.org/10.1038/sj.onc.1203239
  11. Zenz, R., Eferl, R., Scheinecker, C., Redlich, K., Smolen, J., Schonthaler, H. B., Kenner, L., Tschachler, E. and Wagner, E. F. (2008) Activator protein 1 (Fos/Jun) functions in inflammatory bone and skin disease. Arthritis Res. Ther. 10, 201. https://doi.org/10.1186/ar2338
  12. Collart, M. A., Baeuerle, P. and Vassalli, P. (1990) Regulation of tumor necrosis factor alpha transcription in macrophages: involvement of four kappa B-like motifs and of constitutive and inducible forms of NF-kappa B. Mol. Cell Biol. 10, 1498-1506. https://doi.org/10.1128/MCB.10.4.1498
  13. Kim, K. Y., Davidson, P. M. and Chung, H. J. (2001) Antibacterial activity in extracts of Camellia japonica L. petals and its application to a model food system. J. Food Protect. 64, 1255-1260. https://doi.org/10.4315/0362-028X-64.8.1255
  14. Park, J. C., Hur, J. M., Park, J. G., Hatano, T., Yoshida, T., Miyashiro, H., Min, B. S. and Hattori, M. (2002) Inhibitory effects of Korean medicinal plants and camelliatannin H from Camellia japonica on human immunodeficiency virus type 1 protease. Phytother. Res. 16, 422-426. https://doi.org/10.1002/ptr.919
  15. Akihisa, T., Tokuda, H., Ukiya, M., Suzuki, T., Enjo, F., Koike, K., Nikaido, T. and Nishino, H. (2004) 3-epicabraleahydroxylactone and other triterpenoids from camellia oil and their inhibitory effects on Epstein-Barr virus activation. Chem. Pharm. Bull. 52, 153-156. https://doi.org/10.1248/cpb.52.153
  16. Miura, D., Kida, Y. and Nojima, H. (2007) Camellia oil and its distillate fractions effectively inhibit the spontaneous metastasis of mouse melanoma BL6 cells. FEBS Lett. 581, 2541-2548. https://doi.org/10.1016/j.febslet.2007.04.080
  17. Onodera, K., Hanashiro, K. and Yasumoto, T. (2006) Camellianoside, a novel antioxidant glycoside from the leaves of Camellia japonica. Biosci. Biotech. Bioch. 70, 1995-1998. https://doi.org/10.1271/bbb.60112
  18. Piao, M. J., Yoo, E. S., Koh, Y. S., Kang, H. K., Kim, J., Kim, Y. J., Kang, H. H. and Hyun, J. W. (2011) Antioxidant Effects of the Ethanol Extract from Flower of Camellia japonica via Scavenging of Reactive Oxygen Species and Induction of Antioxidant Enzymes. Int. J. Mol. Sci. 12, 2618-2630. https://doi.org/10.3390/ijms12042618
  19. Jung, E., Lee, J., Baek, J., Jung, K., Huh, S., Kim, S., Koh, J. and Park, D. (2007) Effect of Camellia japonica oil on human type I procollagen production and skin barrier function. J. Ethnopharmacol. 112, 127-131. https://doi.org/10.1016/j.jep.2007.02.012
  20. Lee, J. H., Kim, J. W., Ko, N. Y., Mun, S. H., Kim, D. K., Kim, J. D., Kim, H. S., Lee, K. R., Kim, Y. K., Radinger, M., Her, E. and Choi, W. S. (2008) Camellia japonica suppresses immunoglobulin E-mediated allergic response by the inhibition of Syk kinase activation in mast cells. Clin. Exp. Allergy 38, 794-804. https://doi.org/10.1111/j.1365-2222.2008.02936.x
  21. Tsatsanis, C., Androulidaki, A., Venihaki, M. and Margioris, A. N. (2006) Signalling networks regulating cyclooxygenase- 2. Int. J. Biochem. Cell Biol. 38, 1654-1661. https://doi.org/10.1016/j.biocel.2006.03.021
  22. Jang, S. H., Lim, J. W. and Kim, H. (2009) Beta-carotene inhibits Helicobacter pylori-induced expression of inducible nitric oxide synthase and cyclooxygenase-2 in human gastric epithelial AGS cells. J. Physiol. Pharmacol. 60 (Suppl 7), 131-137.
  23. Shaulian, E. and Karin, M. (2002) AP-1 as a regulator of cell life and death. Nat. Cell Biol. 4, E131-136. https://doi.org/10.1038/ncb0502-e131
  24. Moncada, S. and Higgs, E. A. (2006) Nitric oxide and the vascular endothelium. Handb. Exp. Pharmacol. 213-254.
  25. Jayaraman, T., Berenstein, V., Li, X., Mayer, J., Silane, M., Shin, Y. S., Niimi, Y., Kilic, T., Gunel, M. and Berenstein, A. (2005) Tumor necrosis factor alpha is a key modulator of inflammation in cerebral aneurysms. Neurosurgery 57, 558-564. https://doi.org/10.1227/01.NEU.0000170439.89041.D6
  26. Hobbs, A. J., Higgs, A. and Moncada, S. (1999) Inhibition of nitric oxide synthase as a potential therapeutic target. Annu. Rev. Pharmacol. Toxicol. 39, 191-220. https://doi.org/10.1146/annurev.pharmtox.39.1.191
  27. Sautebin, L. (2000) Prostaglandins and nitric oxide as molecular targets for anti-inflammatory therapy. Fitoterapia 71 (Suppl 1), S48-57. https://doi.org/10.1016/S0367-326X(00)00181-7
  28. Dinarello, C. A., Gatti, S. and Bartfai, T. (1999) Fever: links with an ancient receptor. Curr. Biol. 9, R147-150. https://doi.org/10.1016/S0960-9822(99)80085-2
  29. Roux, P. P. and Blenis, J. (2004) ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol. Mol. Biol. R. 68, 320-344. https://doi.org/10.1128/MMBR.68.2.320-344.2004
  30. Vanden Berghe, W., Plaisance, S., Boone, E., De Bosscher, K., Schmitz, M. L., Fiers, W. and Haegeman, G. (1998) p38 and extracellular signal-regulated kinase mitogen- activated protein kinase pathways are required for nuclear factor-kappaB p65 transactivation mediated by tumor necrosis factor. J. Biol. Chem. 273, 3285-3290. https://doi.org/10.1074/jbc.273.6.3285
  31. Baud, V. and Karin, M. (2001) Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol. 11, 372-377. https://doi.org/10.1016/S0962-8924(01)02064-5
  32. Surh, Y. J., Chun, K. S., Cha, H. H., Han, S. S., Keum, Y. S., Park, K. K. and Lee, S. S. (2001) Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat. Res. 480-481, 243-268. https://doi.org/10.1016/S0027-5107(01)00183-X
  33. Liang, Y. C., Huang, Y. T., Tsai, S. H., Lin-Shiau, S. Y., Chen, C. F. and Lin, J. K. (1999) Suppression of inducible cyclooxygenase and inducible nitric oxide synthase by apigenin and related flavonoids in mouse macrophages. Carcinogenesis 20, 1945-1952. https://doi.org/10.1093/carcin/20.10.1945
  34. Rahman, I. and MacNee, W. (2000) Oxidative stress and regulation of glutathione in lung inflammation. Eur. Respir. J. 16, 534-554. https://doi.org/10.1034/j.1399-3003.2000.016003534.x

Cited by

  1. Binding model for eriodictyol to Jun-N terminal kinase and its anti-inflammatory signaling pathway vol.46, pp.12, 2013, https://doi.org/10.5483/BMBRep.2013.46.12.092
  2. Anti-inflammatory Effect of Extracts from Folk Plants in Ulleung Island vol.26, pp.2, 2013, https://doi.org/10.7732/kjpr.2013.26.2.169
  3. Cytotoxicity and Pharmacogenomics of Medicinal Plants from Traditional Korean Medicine vol.2013, 2013, https://doi.org/10.1155/2013/341724
  4. Floridoside suppresses pro-inflammatory responses by blocking MAPK signaling in activated microglia vol.46, pp.8, 2013, https://doi.org/10.5483/BMBRep.2013.46.8.237
  5. Detection and Identification of an Elm Yellows Group Phytoplasma Associated with Camellia in China vol.163, pp.7-8, 2015, https://doi.org/10.1111/jph.12354
  6. Effects of the Extracts from Fruit and Stem of Camellia japonica on Induced Pluripotency and Wound Healing vol.7, pp.11, 2018, https://doi.org/10.3390/jcm7110449
  7. Protective effects of Camellia japonica flower extract against urban air pollutants vol.19, pp.1, 2019, https://doi.org/10.1186/s12906-018-2405-4