DOI QR코드

DOI QR Code

The Formation of Hypoxia Sediment and Benthic Foraminiferal Change in Gamak Bay, Southern Coast of Korea

가막만의 빈산소 퇴적층 형성과 저서성 유공충 군집변화 연구

  • Lee, Yeon-Gyu (Faculty of Marine Technology, College of Fisheres and Ocean Science, Chonnam National University) ;
  • Jeong, Da-Un (Faculty of Marine Technology, College of Fisheres and Ocean Science, Chonnam National University) ;
  • Kang, So-Ra (Faculty of Marine Technology, College of Fisheres and Ocean Science, Chonnam National University) ;
  • Kim, Yong-Wan (Center for Research Facilities, Chonnam National University) ;
  • Kim, Shin (Faculty of Marine Technology, College of Fisheres and Ocean Science, Chonnam National University) ;
  • Jung, Eun-Ho (Korea Hydrographic and Oceanographic Administration) ;
  • Lee, Jung-Sick (Department of Aqualife Medicine, College of Fisheres and Ocean Sciences, Chonnam National University)
  • 이연규 (전남대학교 수산해양대학 해양기술학부) ;
  • 정다운 (전남대학교 수산해양대학 해양기술학부) ;
  • 강소라 (전남대학교 수산해양대학 해양기술학부) ;
  • 김용완 (전남대학교 공동실험실습관) ;
  • 김신 (전남대학교 수산해양대학 해양기술학부) ;
  • 정은호 (국립해양조사원 서해해양조사사무소) ;
  • 이정식 (전남대학교 수산해양대학 수산생명의학과)
  • Received : 2011.04.06
  • Accepted : 2012.01.04
  • Published : 2012.03.30

Abstract

In order to understand the relationship between the formation of hypoxia sediment by eutrophication and changes in benthic foraminiferal assemblage, micropaleontological and geochemical analyses were carried out on one sediment box core (K-1) recovered in the northern Gamak Bay, which is one of the aquacultural areas in the South Sea of Korea. In this analysis, the PON content in the sediment rapidly increased, while the C/N ratio and the C/S ratio decreased since 1977. These results indicate that eutrophication commenced in 1977 in the northern Gamak Bay, and consequently, the hypoxia sediment is 20 cm thick. Ammonia beccarii-Buccella frigida assemblage occurs before the formation of hypoxia sediment. Trochammina hadai-Buccella frigida assemblage appeared in the transitional period toward hypoxia and Trochammina hadai assemblage with a low abundance and diversity is observed in the hypoxia sediment. The agglutinated species T. hadai is regarded as a bio-indicator (opportunistic species) of the organic pollution in northern Gamak Bay.

Keywords

References

  1. 김동선, 김상우 (2003) 진동만의 빈산소수괴 형성기구. 한국 해양학회지 바다 8:177-186
  2. 김정배, 이상용, 유준, 최양호, 정창수, 이필용 (2006) 가막만빈산소 수괴의 특성. 한국해양환경공학회지 9(4):216-224
  3. 노일현, 윤양호, 김대일, 박종식 (2006) 가막만 표층퇴적물중 유기물의 시.공간적 분포 특성. 한국해양환경공학회지 9:1-13
  4. 문성용, 서호영, 최상덕, 정창수, 김숙양, 이영식 (2006) 가막만 동물플랑크톤의 수층 분포에 미치는 저산소화의 영향. 환경생물학회지 24:240-247
  5. 오석진, 박종식, 윤양호, 양한섭 (2009) 북부 가막만의 식물플랑크톤 군집 변동 해석. 해양환경안전학회 15:329-338
  6. 우한준 (2007) 강진만 표층 퇴적물의 저서성 유공충 분포 특성. 한국고생물학회지 23:1-13
  7. 우한준, 김효형, 정갑식, 천종화, 김성은, 추용식 (1999) 마산만 퇴적환경 오염에 따른 저서성 유공충 분포 변화. 한국해양학회지 바다 4:144-154
  8. 우한준, 정갑식, 권수재, 추용식, 김효영, 박성민 (2000) 대산 유화학단지 주변의 저서성 유공충 분포 특성. 고생물학회지 16(2):99-112
  9. 우한준, 이연규 (2006) 강화 남부 갯벌의 유공충 특성. 한국습지학회지 8:51-65
  10. 윤양호 (2010) 바다의 반란 적조. 집문당, 서울, 531 p
  11. 이연규, 황진연, 정규귀 (1995) 가막만 표층퇴적물 특성 및 점토광물. 한국지구과학회지 16:477-488
  12. Alve E (1995a) Benthic foraminiferal responses to estuarine pollution: a review. J Foramin Res 25:190-203 https://doi.org/10.2113/gsjfr.25.3.190
  13. Alve E (1995b) Benthic foraminiferal distribution and recolonization of formerly anoxic environments in Drammensfjord, southern Norway. Mar Micropaleontol 25:169-186 https://doi.org/10.1016/0377-8398(95)00007-N
  14. Alve E, Murray JW (1999) Marginal marine environments of the Skagerrak and Kattegat: a baseline study of living(stained) benthic foraminiferal ecology. Palaeogeogr Palaeocl 146:171-193 https://doi.org/10.1016/S0031-0182(98)00131-X
  15. Amstrong HA, Brasier MD (2005) Microfossils. Second Edition. Blackwell Publishing, UK, 296 p
  16. Arai MN (2001) Pelagic coelenterates and eutrophication: a review. Hydrobiologia 451:69-87 https://doi.org/10.1023/A:1011840123140
  17. Asano K (1950a) Illustrated Catalogue of Japanese Tertiary smaller Foraminifera. Part 1: Nonionidae. Hosokawa Printing Co, Tokyo, Japan, 12 p
  18. Asano K (1950b) Illustrated Catalogue of Japanese Tertiary smaller Foraminifera. Part 2: Buliminidae. Hosokawa Printing Co, Tokyo, Japan, 19 p
  19. Asano K (1950c) Illustrated Catalogue of Japanese Tertiary smaller Foraminifera. Part 3: Textulariidae. Hosokawa Printing Co, Tokyo, Japan, 7 p
  20. Asano K (1950d) Illustrated Catalogue of Japanese Tertiary smaller Foraminifera. Part 4: Valvulinidae. Hosokawa Printing Co, Tokyo, Japan, 4 p
  21. Asano K (1950e) Illustrated Catalogue of Japanese Tertiary smaller Foraminifera. Part 5: Verneuilinidae. Hosokawa Printing Co, Tokyo, Japan, 4 p
  22. Berner RA, Raiswell R (1984) C/S method for distinguishing freshwater from marine sedimentary rocks. Geology 12: 365-368
  23. Boesch DF, Brinsfield RB, Magnien RE (2001) Chesapeake Bay eutrophication: scientific understanding, ecosystem restoration, and challenges for agriculture. J Environ Qual 30:303-320 https://doi.org/10.2134/jeq2001.302303x
  24. Bordowskiy OK (1965a) Accumulation of organic matter in bottom Sediments. Mar Geol 3:33-82 https://doi.org/10.1016/0025-3227(65)90004-6
  25. Bordowskiy OK (1965b) Sources of organic matter in marine basins. Mar Geol 3:5-31 https://doi.org/10.1016/0025-3227(65)90003-4
  26. Cheong HK (1989) A study on the benthic foraminifera from the tidal flats adjacent to Inchon, Korea. J Paleont Soc Kor 5:39-52
  27. Cloern JE (2001) Our evolving conceptual model of coastal eutrophication problem. Mar Ecol Progr Ser 210:223-253 https://doi.org/10.3354/meps210223
  28. Culver SJ, Buzas MA (1995) The effects of anthropogenic habitat disturbance, habitat destruction, and global warming on shallow marine benthic foraminifera. J Foramin Res 25:204-211 https://doi.org/10.2113/gsjfr.25.3.204
  29. Diaz RJ, Rosenberg R (1995) Marine benthic hypoxia: a review of its ecological effects and the behavioral responses of benthic macrofauna. Oceanogr Mar Biol Ann Rev 33:245-303
  30. Ernst SR, Morvan J, Geslin E, Le Bihan A, Jorissen FJ (2006) Benthic foraminiferal response to experimentally induced Erika oil pollution. Mar Micropaleontol 61:76-93 https://doi.org/10.1016/j.marmicro.2006.05.005
  31. Folk RL (1968) Petrology of the sedimentary rocks. Hemphills, Austin, Texas, 170 p
  32. Frontalini F, Coccioni R (2008) Benthic foraminifera for heavy metal pollution monitoring: a case study from the central Adriatic Sea coast of Italy. Estuar Coast Shelf Sci 76:404-417 https://doi.org/10.1016/j.ecss.2007.07.024
  33. Gray JS (1992) Eutrophication in the sea. In: Columbo G, Ferrari I, Ceccherelli VU, Rossi R (eds) Marine eutrophication and population dynamics. Olsen and Olsen, Fredensborg, pp 3-15
  34. Gray JS, Wu RSS, Or YY (2002) Effects of hypoxia and organic enrichment on the coastal marine environment. Mar Ecol Progr Ser 238:249-279 https://doi.org/10.3354/meps238249
  35. Hanazato T (1997) Development of low-oxygen layer in lake and its effect on zooplankton commnities. Kor J Limnol 30:506-511
  36. Hayward BW, Sabaa A, Grenfell HR (2004) Benthic foraminifera and the late Quaternary (last 150ka) paleoceanographic and sedimentary history of the Bounty Trough, east of Newzealand. Palaeogeogr Palaeocl 211:59-93 https://doi.org/10.1016/j.palaeo.2004.04.007
  37. Hong JS (1987) Summer oxygen deficiency and benthic biomass in the Chinhae bay system, Korea. J Kor Soc Oceanogr 22:246-256
  38. Ingram RL (1971) Sieve analysis. In: Carver RE (ed) Process in sedimentary petrology. Willey-Inter Science, pp 49-67
  39. Kang CK, Lee PY, Park JS, Kim PJ (1993) On the distribution of organic matter in the nearshore surface sediment of Korea. Bull Kor Fish Soc 26(6):557-566
  40. Kang SR (2003) Benthic Foraminiferal Biostratrgraphy and Paleoenvironments of the Seogwipo Fromation, Jeju Island, Korea. Ph.D. Thesis, Pusan Nationl University, 231 p
  41. Kang SW (1991) Circulation and pollutant dispersion in Masan-Jinhae Bay of Korea. Mar Pollut Bull 23:37-40 https://doi.org/10.1016/0025-326X(91)90646-A
  42. Lee MO, Kim BK (2009) Wind effects on tidal currents in Gamak Bay. J Ocean Eng Tech 23:18-27
  43. Lee YG, Chu YS, Jung KK, Woo HJ, Lee HJ (2000) Depositional processes of fine-grained sediments and foraminiferal imprint of estuarine circulation by Summer floods in Yoja Bay, Southern Coast of Korea. J Kor Soc Oceanogr 35:109-123
  44. Lim HS, Diaz RJ, Hong JS, Schaffner LC (2006) Hypoxia and benthic community recovery in Korean coastal waters. Mar Pollut Bull 52:1517-1526 https://doi.org/10.1016/j.marpolbul.2006.05.013
  45. Matoba Y (1970) Distribution of Recent Shallow Water Foraminifera of Matsushima Bay, Miyagi Prefecture, Northeast Japan. Sci Rep Tohoku B 42:1-85
  46. Matsumoto E (1981) Research activity on the coastal marine pollution. Chisitsu News 319:52-58
  47. Mojtahid M, Jorissen F, Pearson TH (2008) Comparison of benthic foraminiferal and macrofaunal responses to organic pollution in the Firth of Clyde (Scotland). Mar Pollut Bull 56:42-76 https://doi.org/10.1016/j.marpolbul.2007.08.018
  48. Moodly L, Hess C (1992) Tolerance of infaunal benthic foraminifera for low and high oxygen concentrations. Biol Bull 183:94-98 https://doi.org/10.2307/1542410
  49. Morvan J, Cadre VL, Jorissen F, Debenay JP (2004) Foraminifera as potential bio-indicators of the "Erika" oil spill in the Bay of Bourgneuf: field and experimental studies. Aquat Living Resour 17:317-322 https://doi.org/10.1051/alr:2004034
  50. Muller PJ (1977) C/N ration in Pacific deep-sea sediments: effect of inorganic ammonium and organic nitrogen compounds sorbed by clays. Geochim Cosmochim Ac 41:765-776 https://doi.org/10.1016/0016-7037(77)90047-3
  51. Murray JW (1991) Ecology and Palaeoecology of Benthic Foraminifera. Longman Scientific & Technical, 397 p
  52. Murray JW (2006) Ecology and Applications of Benthic Foraminifera. Cambridge University Press, New York, 426 p
  53. Murray JW, Alve E (2002) Benthic foraminifera as indicators of environmental change: marginal-marine, shelf and upper slope environments. In: Haslett SK (ed) Quaternary environmental micropalaeontology. Oxford University Press, New York, pp 59-90
  54. Nomura R (2003) Assessing the roles of artificial vs. natural impacts on brackish lake environments: foraminiferal evidence from Lake Nakaumi, southwest Japan. J Geol Soc Japan 109:197-214 https://doi.org/10.5575/geosoc.109.197
  55. Nomura R, Seto K (2002) Influence of man-made construction on environmental conditions in brackish Lake Nakaumi, southwest Japan: foraminiferal evidence. J Geol Soc Japan 108:394-409 https://doi.org/10.5575/geosoc.108.394
  56. Pielou EC (1966) The measurement of diversity in different types of biological collections. J Theor Biol 13:131-144 https://doi.org/10.1016/0022-5193(66)90013-0
  57. Platon E, Sen Gupta BK, Rabalaisc NN, Turner RE (2005) Effect of seasonal hypoxia on the benthic foraminiferal community of the Louisiana inner continental shelf: the 20th century record. Mar Micropaleontol 54:263-283 https://doi.org/10.1016/j.marmicro.2004.12.004
  58. Rabalais NN, Turner RE, Sen Gupta BK, Platon E, Parsons ML (2007) Sediments tell the history of eutrophication and hypoxia in the northern Gulf of Mexico. Ecol Appl 17:129-143 https://doi.org/10.1890/1051-0761(2007)017[0129:PHRAFH]2.0.CO
  59. Samir AM, El-Din AB (2001) Benthic foraminiferal assemblages and morphological abnormalities as pollution proxies in two Egyptian bays. Mar Micropaleontol 41: 193-227 https://doi.org/10.1016/S0377-8398(00)00061-X
  60. Sampei Y, Matsumoto E (2001) C/N ratios in a sediment core from Nakaumi lagoon, southwest Japan-usefulness as an organic source indicator. Geochem J 35:189-205 https://doi.org/10.2343/geochemj.35.189
  61. Schafer CT (1973) Distribution of Foraminifera near pollution sources in Chaleur Bay. Water Air Soil Poll 2:219-233 https://doi.org/10.1007/BF00655698
  62. Scott DB, Medioli FS, Schafer CT (2001) Monitering in coastal environments using foraminifera and thecamoebial indicators. Cambridge University Press, 177 p
  63. Shannon C E, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana 125 p
  64. Thibodeau B, de Vernal A, Mucci A (2006) Recent eutrophication and consequent hypoxia in the bottom waters of the Lower St. Lawrence Estuary: micropaleontological and geo-chemical evidence. Mar Geol 231:37-50 https://doi.org/10.1016/j.margeo.2006.05.010
  65. Thomas E, Gapotchenko T, Varekamp JC, Mecray EL, Buchholz ten Brink MR (2000) Benthic foraminifera and environmental changes in long Island Sound. J Coast Res 16:641-655
  66. Tsujimoto A, Nomura R, Yasuhara M, Yoshikawa S (2006a) Benthic foraminiferal assemblages in Osaka Bay, southwestern Japan: faunal changes over the last 50 years. Paleontol Res 10:141-161 https://doi.org/10.2517/prpsj.10.141
  67. Tsujimoto A, Nomura R, Yasuhara M, Yamazaki H, Yoshikawa S (2006b) Impact of eutrophication on shallow marine benthic foraminifers over the last 150 years in Osaka Bay, Japan. Mar Micropaleontol 60:258-268 https://doi.org/10.1016/j.marmicro.2006.06.001
  68. Tsujimoto A, Yasuhara M, Nomura R, Yamazaki H, Sampei Y, Hirose K, Yoshikawa S (2008) Development of modern benthic ecosystems in eutrophic coastal oceans: the foraminiferal record over the last 200 years, Osaka Bay, Japan. Mar Micropaleontol 69:225-239 https://doi.org/10.1016/j.marmicro.2008.08.001
  69. Yanko V, Ahmad M, Kaminski M (1998) Morphological deformities of benthic foraminiferal tests in response to pollution by heavy metals: implications for pollution monitoring. J Foramin Res 28:177-200
  70. Yanko V, Arnold AJ, Parker WC (1999) Effect of marine pollution on benthic foraminifera. In: Sen Gupta BK (ed) Modern foraminifera. Kluwer Academic Publishers, Dordrecht, pp 201-216

Cited by

  1. Effect of abalone farming on seawater movement and benthic foraminiferal assemblage of Zostera marina in the inner bay of Wando, South Korea vol.109, pp.1, 2016, https://doi.org/10.1016/j.marpolbul.2016.05.081
  2. Effects of hypoxia caused by mussel farming on benthic foraminifera in semi-closed Gamak Bay, South Korea vol.109, pp.1, 2016, https://doi.org/10.1016/j.marpolbul.2016.01.024