References
- Palmieri, C., Varaldo, P.E., and Facinelli, B. Streptococcus suis, an Emerging Drug-Resistant Animal and Human Pathogen. Front Microbiol 2, 235.
- Tsai, H.Y., Liao, C.H., Liu, C.Y., Huang, Y.T., Teng, L.J., and Hsueh, P.R. Streptococcus suis infection in Taiwan, 2000-2011. Diagn Microbiol Infect Dis.
- Choi, S.M., Cho, B.H., Choi, K.H., Nam, T.S., Kim, J.T., Park, M.S., Kim, B.C., Kim, M.K., and Cho, K.H. Meningitis caused by Streptococcus suis:report and review of the literature. J Clin Neurol 8, 79-82.
- Takamatsu, D. Diversity and virulence factors of Streptococcus suis. Nihon Saikingaku Zasshi 66, 7-21.
- Fernandez-Ferro, J., Lopez-Gonzalez, F.J., Pardo, F., and Pias-Peleteiro, J.M. [Acute Streptococcus suis meningitis in a pig breeder]. Enferm Infecc Microbiol Clin 29, 396-397.
- Ngo, T.H., Tran, T.B., Tran, T.T., Nguyen, V.D., Campbell, J., Pham, H.A., Huynh, H.T., Nguyen, V.V., Bryant, J.E., Tran, T.H., et al. Slaughterhouse pigs are a major reservoir of Streptococcus suis serotype 2 capable of causing human infection in southern Vietnam. PLoS One 6, e17943.
- Nakayama, T., Takeuchi, D., Akeda, Y., and Oishi, K. Streptococcus suis infection induces [corrected] bacterial accumulation in the kidney. Microb Pathog 50, 87-93.
- Muckle, A., Giles, J., Lund, L., Stewart, T., and Gottschalk, M. Isolation of Streptococcus suis from the urine of a clinically ill dog. Can Vet J 51, 773-774.
- Xu, M., Wang, S., Li, L., Lei, L., Liu, Y., Shi, W., Wu, J., Rong, F., Sun, G., Xiang, H., et al. Secondary infection with Streptococcus suis serotype 7 increases the virulence of highly pathogenic porcine reproductive and respiratory syndrome virus in pigs. Virol J 7, 184.
- Tan, J.H., Yeh, B.I., and Seet, C.S. Deafness due to haemorrhagic labyrinthitis and a review of relapses in Streptococcus suis meningitis. Singapore Med J 51, e30-33.
- Zhang, C.T., and Zhang, R. (2008). Gene essentiality analysis based on DEG, a database of essential genes. Methods Mol Biol 416, 391-400. https://doi.org/10.1007/978-1-59745-321-9_27
- Zhang, R., and Lin, Y. (2009). DEG 5.0, a database of essential genes in both prokaryotes and eukaryotes. Nucleic Acids Res 37, D455-458. https://doi.org/10.1093/nar/gkn858
- Zhang, R., Ou, H.Y., and Zhang, C.T. (2004). DEG: a database of essential genes. Nucleic Acids Res 32, D271-272. https://doi.org/10.1093/nar/gkh024
- Peterson, J.D., Umayam, L.A., Dickinson, T., Hickey, E.K., and White, O. (2001). The Comprehensive Microbial Resource. Nucleic Acids Res 29, 123-125. https://doi.org/10.1093/nar/29.1.123
- Maurizi, M.R., Thompson, M.W., Singh, S.K., and Kim, S.H. (1994). Endopeptidase Clp: ATP-dependent Clp protease from Escherichia coli. Methods Enzymol 244, 314-331. https://doi.org/10.1016/0076-6879(94)44025-5
- Maurizi, M.R., Clark, W.P., Katayama, Y., Rudikoff, S., Pumphrey, J., Bowers, B., and Gottesman, S. (1990). Sequence and structure of Clp P, the proteolytic component of the ATP-dependent Clp protease of Escherichia coli. J Biol Chem 265, 12536-12545.
- Gottesman, S., Roche, E., Zhou, Y., and Sauer, R.T. (1998). The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. Genes Dev 12, 1338-1347. https://doi.org/10.1101/gad.12.9.1338
- Clarke, A.K. The chloroplast ATP-dependent Clp protease in vascular plants - new dimensions and future challenges. Physiol Plant 145, 235-244.
- Wu, H., Ji, Y., Du, J., Kong, D., Liang, H., and Ling, H.Q. ClpC1, an ATPdependent Clp protease in plastids, is involved in iron homeostasis in Arabidopsis leaves. Ann Bot 105, 823-833.
- Sjogren, L.L., and Clarke, A.K. Assembly of the chloroplast ATP-dependent Clp protease in Arabidopsis is regulated by the ClpT accessory proteins. Plant Cell 23, 322-332.
- Sjogren, L.L., Stanne, T.M., Zheng, B., Sutinen, S., and Clarke, A.K. (2006). Structural and functional insights into the chloroplast ATP-dependent Clp protease in Arabidopsis. Plant Cell 18, 2635-2649. https://doi.org/10.1105/tpc.106.044594
- Andersson, F.I., Tryggvesson, A., Sharon, M., Diemand, A.V., Classen, M., Best, C., Schmidt, R., Schelin, J., Stanne, T.M., Bukau, B., et al. (2009). Structure and function of a novel type of ATP-dependent Clp protease. J Biol Chem 284, 13519-13532. https://doi.org/10.1074/jbc.M809588200
- Skinner, M.M., and Trempy, J.E. (2001). Expression of clpX, an ATPase subunit of the Clp protease, is heat and cold shock inducible in Lactococcus lactis. J Dairy Sci 84, 1783-1785.
- Porankiewicz, J., Wang, J., and Clarke, A.K. (1999). New insights into the ATP-dependent Clp protease: Escherichia coli and beyond. Mol Microbiol 32, 449-458. https://doi.org/10.1046/j.1365-2958.1999.01357.x
- Gerth, U., Kruger, E., Derre, I., Msadek, T., and Hecker, M. (1998). Stress induction of the Bacillus subtilis clpP gene encoding a homologue of the proteolytic component of the Clp protease and the involvement of ClpP and ClpX in stress tolerance. Mol Microbiol 28, 787-802.
- Zellmeier, S., Schumann, W., and Wiegert, T. (2006). Involvement of Clp protease activity in modulating the Bacillus subtilissigmaw stress response. Mol Microbiol 61, 1569-1582. https://doi.org/10.1111/j.1365-2958.2006.05323.x
- Kruger, E., Zuhlke, D., Witt, E., Ludwig, H., and Hecker, M. (2001). Clpmediated proteolysis in Gram-positive bacteria is autoregulated by the stability of a repressor. EMBO J 20, 852-863. https://doi.org/10.1093/emboj/20.4.852
- Miethke, M., Hecker, M., and Gerth, U. (2006). Involvement of Bacillus subtilis ClpE in CtsR degradation and protein quality control. J Bacteriol 188, 4610-4619. https://doi.org/10.1128/JB.00287-06
- Gerth, U., Kirstein, J., Mostertz, J., Waldminghaus, T., Miethke, M., Kock, H., and Hecker, M. (2004). Fine-tuning in regulation of Clp protein content in Bacillus subtilis. J Bacteriol 186, 179-191. https://doi.org/10.1128/JB.186.1.179-191.2004
- Kock, H., Gerth, U., and Hecker, M. (2004). MurAA, catalysing the first committed step in peptidoglycan biosynthesis, is a target of Clp-dependent proteolysis in Bacillus subtilis. Mol Microbiol 51, 1087-1102. https://doi.org/10.1046/j.1365-2958.2003.03875.x
- Kirstein, J., Zuhlke, D., Gerth, U., Turgay, K., and Hecker, M. (2005). A tyrosine kinase and its activator control the activity of the CtsR heat shock repressor in B. subtilis. EMBO J 24, 3435-3445. https://doi.org/10.1038/sj.emboj.7600780
- Thanassi, J.A., Hartman-Neumann, S.L., Dougherty, T.J., Dougherty, B.A., and Pucci, M.J. (2002). Identification of 113 conserved essential genes using a high-throughput gene disruption system in Streptococcus pneumoniae. Nucleic Acids Res 30, 3152-3162. https://doi.org/10.1093/nar/gkf418
- Molzen, T.E., Burghout, P., Bootsma, H.J., Brandt, C.T., van der Gaast-de Jongh, C.E., Eleveld, M.J., Verbeek, M.M., Frimodt-Moller, N., Ostergaard, C., and Hermans, P.W. Genome-wide identification of Streptococcus pneumoniae genes essential for bacterial replication during experimental meningitis. Infect Immun 79, 288-297.
- Song, J.H., Ko, K.S., Lee, J.Y., Baek, J.Y., Oh, W.S., Yoon, H.S., Jeong, J.Y., and Chun, J. (2005). Identification of essential genes in Streptococcus pneumoniae by allelic replacement mutagenesis. Mol Cells 19, 365-374.
- Bijlsma, J.J., Burghout, P., Kloosterman, T.G., Bootsma, H.J., de Jong, A., Hermans, P.W., and Kuipers, O.P. (2007). Development of genomic array footprinting for identification of conditionally essential genes in Streptococcus pneumoniae. Appl Environ Microbiol 73, 1514-1524. https://doi.org/10.1128/AEM.01900-06
- Lee, M.S., Dougherty, B.A., Madeo, A.C., and Morrison, D.A. (1999). Construction and analysis of a library for random insertional mutagenesis in Streptococcus pneumoniae: use for recovery of mutants defective in genetic transformation and for identification of essential genes. Appl Environ Microbiol 65, 1883-1890.
- Porankiewicz, J., Schelin, J., and Clarke, A.K. (1998). The ATP-depen dent Clp protease is essential for acclimation to UV-B and low temperature in the cyanobacterium Synechococcus. Mol Microbiol 29, 275-283. https://doi.org/10.1046/j.1365-2958.1998.00928.x
- Shapiro, J.A. (1993). A role for the Clp protease in activating Mu-mediated DNA rearrangements. J Bacteriol 175, 2625-2631. https://doi.org/10.1128/jb.175.9.2625-2631.1993
- Kaakoush, N.O., Deshpande, N.P., Wilkins, M.R., Raftery, M.J., Janitz, K., and Mitchell, H. Comparative analyses of Campylobacter concisusstrains reveal the genome of the reference strain BAA-1457 is not representative of the species. Gut Pathog 3, 15.
- O'Brien, S.J., Womack, J.E., Lyons, L.A., Moore, K.J., Jenkins, N.A., and Copeland, N.G. (1993). Anchored reference loci for comparative genome mapping in mammals. Nat Genet 3, 103-112. https://doi.org/10.1038/ng0293-103
- Hu, P., Yang, M., Zhang, A., Wu, J., Chen, B., Hua, Y., Yu, J., Chen, H., Xiao, J., and Jin, M. Complete genome sequence of Streptococcus suis serotype 3 strain ST3. J Bacteriol 193, 3428-3429.