DOI QR코드

DOI QR Code

Agronomic characteristics and field resistance to bacterial soft rot of transgenic potato overexpressing the soybean calmodulin 4 gene (SCaM4)

SCaM4 과발현 형질전환 감자의 농업적 특성 및 감자 무름병 저항성 평가

  • Sohn, Hwangbae (Highland Agriculture Research Center, National Institute of Crop Science) ;
  • Cho, Kwangsoo (Highland Agriculture Research Center, National Institute of Crop Science) ;
  • Cho, Jihong (Highland Agriculture Research Center, National Institute of Crop Science) ;
  • Gwon, Ohgeun (Highland Agriculture Research Center, National Institute of Crop Science) ;
  • Cheon, Chunggi (Highland Agriculture Research Center, National Institute of Crop Science) ;
  • Choi, Jigyeong (Highland Agriculture Research Center, National Institute of Crop Science) ;
  • Chung, Woosik (Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center) ;
  • Lee, Shin Woo (Division of Agronomy and Medical Resources, Gyeongnam National University of Science and Technology)
  • 손황배 (농촌진흥청 국립식량과학원 고령지농업연구센터) ;
  • 조광수 (농촌진흥청 국립식량과학원 고령지농업연구센터) ;
  • 조지홍 (농촌진흥청 국립식량과학원 고령지농업연구센터) ;
  • 권오근 (농촌진흥청 국립식량과학원 고령지농업연구센터) ;
  • 천충기 (농촌진흥청 국립식량과학원 고령지농업연구센터) ;
  • 최지경 (농촌진흥청 국립식량과학원 고령지농업연구센터) ;
  • 정우식 (경상대학교 대학원 응용생명과학부, 식물분자생물학 및 유전자조작연구소) ;
  • 이신우 (경남과학기술대학교 생명자원과학대학농학.한약자원학부)
  • Received : 2012.11.13
  • Accepted : 2012.11.30
  • Published : 2012.12.31

Abstract

We performed in vitro assay and field trials to assess levels of changes in intrinsic properties and resistance against soft rot of the potato cv. Dejima upon the introduction of a soybean calmodulin 4 gene (SCaM4). Field trials with four lines overexpressing SCaM4 gene were conducted over two seasons, and harvested tubers were evaluated in bioassay for resistance to Pectobacterium carotovorum ssp. carotovorum. The SCaM4 transgenic potato lines inoculated with $10^8$ CFU/ml of P. carotovorum ssp. carotovorum showed enhanced resistance compared to control. Among the SCaM4 transgenic lines, the transgenic line SCaM4-4 exhibited the highest tolerance to soft rot in vitro assays, so did in field trials. In the field trial, the soft rot resistance of SCaM4-4 line was more than 5 times higher compared to that of control cultivar, Dejima. The major agronomic characteristics of the SCaM4 transgenic lines were not different from those of the nontransgenic 'Dejima'. The result demonstrated that the transformation of a calmodulin 4 gene was a successful strategy in development of potato cultivar enhanced to soft rot.

SCaM4 과발현 감자의 무름병에 대한 저항성은 대비 품종인 '대지'에 비해 실내 외 검정에서 저항성인 것으로 나타났으며, SCaM4 과발현 SCaM4-4 계통의 경우 실내 외에서 무름병 저항성이 강하였다. SCaM4 과발현 형질전환 감자 계통들에 대한 포장 검정 결과 공시된 4 계통은 꽃색, 줄기형 등에서 대조품종인 대지와 차이가 없었다. 괴경특성 및 수량성의 경우 주당 괴경수는 유사했으나 과발현체의 경우 줄기 무름병 저항성으로 동화산물의 생성 및 집적이 원활하여 괴경 무게 증가하여 수량이 증가하는 경향성을 보였다. 실내외검정에서 무름병에 강한 저항성을 보인 SCaM4-4 라인은 대조품종인 대지와 실질적인 동등성을 확인할 수 있어 향후 식품학적 안전성과 환경위해성 평가가 이루어진다면 실용화 가능성이 클 것으로 사료된다.

Keywords

References

  1. Chun HJ, Goo YM, Kim TW, Chung WS, Yun DJ, Lee CH and Lee SW (2008) Over-expression of SCaM4, a soybean calmodulin, confers increased soft rot disease resistance in potato (Solanum tuberosum L.). Proceedings of the Korean Society of Plant Biotechnology Conference 95
  2. Chun HJ, Park HC, Goo YM, Kim TW, Cho KS, Cho HS, Yun DJ, Chung WS and Lee SW (2011) AtCBP63, a Arabidopsis calmodulin-binding protein 63, enhances disease resistance against soft rot disease in potato. J Plant Biotechnol 38:62-68 https://doi.org/10.5010/JPB.2011.38.1.062
  3. Gnanamanickam S, Charkowski A (2006) The soft rot Erwinia. Plant-associated bacteria. Springer The Netherlands pp 423-505
  4. Heo W, Lee S, Kim M, Kim J, Chung W, Chun H, Lee K, Park H, Choi J, and Cho MJ (1999) Involvement of specific calmodulin isoforms in salicylic acid-independent activation of plant disease resistance responses. Proc Natl Acad Sci USA 96:766-771 https://doi.org/10.1073/pnas.96.2.766
  5. James C (2009) Global status of commercialized biotech/GM crops. ISAAA Brief No. 41. ISAAA: Ithaca, NY
  6. Kim SH, Kang YH, Han HJ, Bae DW, Kim MC, Lim CO, and Chung WS (2009) Identification of anthother calmodulinbinding domain at the C-termianl region of AtCBP63. J Plant Biotechnol 36: 53-58 https://doi.org/10.5010/JPB.2009.36.1.053
  7. Latour X, Fature D, Diallo S, Cirou A, Smadjia B, Dessaux Y, Orange N (2008) Control of bacterial diseases of potato caused by Pectobacterium spp. (E. carotovora). Cahiers Agric 17:355-360
  8. Lecourieux D, Renjeva R, and Pugin A (2006) Calcium in plant defense-signalling pathways. New phytol 171:249-269 https://doi.org/10.1111/j.1469-8137.2006.01777.x
  9. MacGuire RG and Kelman A (1985) Reduced severity of Erwinia soft rot in potato tubers with increased calcium content. Phytopathol 74:1250-1256
  10. Palva T K, Holmström KO, Heino P, and Palva E T (1993) Induction of plant defense response by exoenzymes of Erwinia carotovora subsp. carotovora. Mol Plant-Microbe Interact 6:190-196 https://doi.org/10.1094/MPMI-6-190
  11. Palva TK, Hurtig M, Saindrenan P, and Palva ET (1994) Salicylic acid induced resistance to Erwinia carotovora subsp. carotovora in tobacco. Mol Plant-Microbe Interact 7:356-363 https://doi.org/10.1094/MPMI-7-0356
  12. Roberts DM and Harmon AC (1992) Calmodulin-modulated proteins: targets of intracellular calcium signals in higher plants. Annu Rev Plant Physiol Plant Mol Biol 43:375-414 https://doi.org/10.1146/annurev.pp.43.060192.002111
  13. Rural Development Administration (2011) The potato. RDA, Suwon, Korea
  14. Setterblad CN, Vidal S, and Palva ET (2000) Interacting signal pathways control defense gene expression in Arabidopsis in response to cell wall-degrading from Erwinia carotovora. Mol Plant-Microbe Interact 13:430-438 https://doi.org/10.1094/MPMI.2000.13.4.430
  15. Sjefke JHM, Florack DEA, Hoogendoorn C, and Stiekma WJ (1995) Erwinia soft rot resistance of potato cultivars transformed with a gene construct coding for antimicrobial peptide ceropin B is not altered. Amer J Potato Research 72:437-445 https://doi.org/10.1007/BF02851677