DOI QR코드

DOI QR Code

Comparison of transcriptome analysis between red flash peach cultivar and white flash peach cultivar using next generation sequencing

Next generation sequencing 방법을 이용한 적육계 복숭아와 백육계 복숭아의 전사체 분석

  • Kim, Se Hee (Fruit Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Nam, Eun Young (Fruit Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Cho, Kang-Hee (Fruit Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Shin, Il Sheob (Fruit Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Kim, Hyun Ran (Fruit Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Hwang, Hae Seong (Fruit Research Division, National Institute of Horticultural & Herbal Science, RDA)
  • 김세희 (농촌진흥청 국립원예특작과학원 과수과) ;
  • 남은영 (농촌진흥청 국립원예특작과학원 과수과) ;
  • 조강희 (농촌진흥청 국립원예특작과학원 과수과) ;
  • 신일섭 (농촌진흥청 국립원예특작과학원 과수과) ;
  • 김현란 (농촌진흥청 국립원예특작과학원 과수과) ;
  • 황해성 (농촌진흥청 국립원예특작과학원 과수과)
  • Received : 2012.11.09
  • Accepted : 2012.11.23
  • Published : 2012.12.31

Abstract

Differences of gene expression between red flash peach cultivar and white flash peach cultivar were investigated by Nest-generation sequencing (NGS). EST from the red flash peach cultivar and white flash peach cultivar were selected for nucleotide sequence determination and homology searches. The levels of transcripts coding for proteins involved in pathogenesis related proteins, temperature stress, ethylene signal pathway were significantly higher in white flash peach cultivar than in red flash peach cultivar. On the other hand, the up-regulation of proteins involved in anthocyanin and flavonol biosynthesis and protein degradation and sorbitol metabolism were observed in red flash peach cultivar. Chalcone synthase was preferentially expressed in the red flesh peach cultivar, agreeing with the accumulation of anthocyanin and expression of other previously identified genes for anthocyanin biosynthesis. Anthocyanin pathway related genes CHS, F3H, DFR, LDOX, UFGT differentially expressed between red flash peach cultivar and white flash peach cultivar. These results suggest that red flash peach cultivar and white flash peach cultivar have different anthocyanin biosynthesis regulatory mechanisms.

Keywords

References

  1. Ahmad R, Parfitt DE, Fass J, Ogundiwin E, Dhingra A, Gradziel TM, Lin D, Joshi NA, Martinet-Garcia PJ, Crisosto CH (2011) Whole genome sequencing of peach (Prunus Persica L.) for SNP identification and selection
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403-410 https://doi.org/10.1016/S0022-2836(05)80360-2
  3. Ashburner M, Bell CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppiq JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Rinqwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature Genet 25(1):25-29 https://doi.org/10.1038/75556
  4. Butler WL, and Strasser RJ (1978) Effect of divalent cations on energy coupling between the light harvesting chlorophyll a/b comples and photosystem II. In Proceedings of the 4th International congress on Photosynthesis, Hall DO Coombs J, Goodwin T eds (London:Biochemical Society):9-20
  5. Carolina Di Santo M, Pagano EA, Sozzi Go (2005) Differential expression of alpha-1-arabinofuranosidase and alpha-1arabinofuranosidase/beta-d-xylosidase genes during peach growth and ripening. Plant Physiol Biochem 47(7):562-569
  6. Childers NF (1988) The peach. P. 1-8. Somervill:Somerset press
  7. Drexler HC (1997) Activation of the cell death program by inhibition of proteasome function. Proc Natl Acad Sci USA 94(3):855-860 https://doi.org/10.1073/pnas.94.3.855
  8. Dunsmuir P (1985) The petunia chlorophyll a/b binding protein genes: a comparison of Cab genes from different gene families. Nuc Acids Res 13:2503-2518 https://doi.org/10.1093/nar/13.7.2503
  9. Forkmann G, Martens S (2001) Metabolic engineering and applications of flavonoids. Curr Opin in Biotech 12:155-160 https://doi.org/10.1016/S0958-1669(00)00192-0
  10. Fraser PD, Romer S, Shipton CA, Mills PB, Kiano JW, Misawa N, Drake RG, Schuch W, Bramley PM (2002) Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner. Proc Natl Acad Sci USA 99:1092-1097 https://doi.org/10.1073/pnas.241374598
  11. Goffreds JC, Armstrong Nick JM, Mehlenbacher SA, Vorsa N (1991) Inheritance of isozymes in peach x Prunus Kansuensis and peach x Prunus davidiana hybrids. 54:161-168
  12. Hanana M, Deluc L, Fouquet R, Daldoul S, Leon C, Barrieu F, Ghorber A, Mliki A, Hamdi S (2008) Identification and characterization of "rd22" dehydration responsive gene in grapevine (Vitis vinifera L.) C R Biol 331(8):569-578 https://doi.org/10.1016/j.crvi.2008.05.002
  13. Holton TA, Cornish EC (1995) Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7:1071-1083 https://doi.org/10.1105/tpc.7.7.1071
  14. Hui-Hsien C Michael HH (2001) DNA sequence quality trimming and vector removal. Bioinformatics 17(12):1093-1104 https://doi.org/10.1093/bioinformatics/17.12.1093
  15. Kristin B, Lavanya P, David S, Paul B (2005) Mutations in soybean microsomal omega-3-fatty acid desaturase genes reduce linolenic acid concentration in soybean seeds. Crop Science 45(5):1830-1836 https://doi.org/10.2135/cropsci2004.0632
  16. Lester DR, Speirs J, Orr G, Brady CJ (1994) Peach (Prunus persica) endopolygalacturonase cDNA isolation and mRNA analysis in melting and nonmelting peach cultivars. Plant Physiol 105(1):225-231 https://doi.org/10.1104/pp.105.1.225
  17. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer ML, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376-380 https://doi.org/10.1038/nature03959
  18. Martin S and Boris S (2010) Mechanisms of mono-and polyubiquitination: Ubiquitination specificity depends on compatibility between the E2 catalytic core and amino acid residues proximal to the lysine. Cell Division 5:19-23 https://doi.org/10.1186/1747-1028-5-19
  19. Mayfidld SP, Rahire M, Frank G, Zuber H, Rochaix JD (1987) Expression of the nuclear encoding oxygen-evolving enhancer 2 is required for high levels of photosynthetic oxygen evolution in Chlamydomonas reinharditii. Proc Natl Acad Sci USA 84(3):749-753 https://doi.org/10.1073/pnas.84.3.749
  20. Ogundiwin EA, Peace CP, Nicolet CM, Rashbrook VK, Gradziel TM, Bliss FA, Parfitt D, Crisosto CH (2008) Leucoanthocyanidin dioxygenase gene (PpLDOX): a potential functional marker for cold storage browning in peach. Tree Genetics & Genomes 4(3): 543-554 https://doi.org/10.1007/s11295-007-0130-0
  21. Park JS, Kim JB, Kim KH, Ha SH, Han BS, Kim YH (2002) Flavonoid biosynthesis: Biochemistry and metabolic engineering. Korean J. Plant Biotechnology 29(4):265-275 https://doi.org/10.5010/JPB.2002.29.4.265
  22. Peng Y, Lin W, Cai W, Arora R (2007) Overexpression of a Panax ginseng tonoplast aquaporin alters salt tolerance, drought tolerance and cold acclimation ability in transgenic Arabidopsis plants. Planta 226:729-740 https://doi.org/10.1007/s00425-007-0520-4
  23. Pozzi C, Vecchietti A (2009) Peach structural genomics. In: Folta KM, Gardiner SE (eds) Genetics and genomics of Rosaceae. Springer, New York, pp 235-257
  24. Raffaella G, Viktoria J, Miguel PS (2010) Mechanisms of cell protection by heme oxygenase-1. Annu Rev Pharmacol Tosicol 50:323-354 https://doi.org/10.1146/annurev.pharmtox.010909.105600
  25. Shujun C, Jeff P, John C (1993) A simple and efficient method for isolating RNA from pine trees. Plant Molecular Biology Reporter 11(2):113-116 https://doi.org/10.1007/BF02670468
  26. Thornber JP (1975) Chlorophyll-proteins: light-harvesting and reaction centre components of plants. Annu Rev Plant Physiol 26:127-155 https://doi.org/10.1146/annurev.pp.26.060175.001015
  27. Vidal JR, Kikkert JR, Wallace PG, Reisch BI (2003) High-efficiency biolistic co-transformation and regeneration of 'Chardonnay' (Vitis vinifera L.) containing npt-II and antimicrobial peptide genes. Plant Cell Rep 22:252-260 https://doi.org/10.1007/s00299-003-0682-x
  28. Walling LL, Chang YC, Demmin DS, Holzer FM (1988) Isolation, characterization and evolutionary relatedness of three members from the soybean multigene family endoding chlorophyll a/b binding proteins Nuc. Acids Res 16:10477-10492 https://doi.org/10.1093/nar/16.22.10477
  29. Wurgler-Murphy SM and Saito H (1997) Two-component signal transducers and MAPK cascades. Trends Biochem Sci 22:172-176 https://doi.org/10.1016/S0968-0004(97)01036-0
  30. Ying Z, Dong G, Jing L, Jun C, Hui Z, Chao G, Sue G, Yue-Peng H (2012) Coordinated regulation of anthocyanin biosynthesis through photorespiration and temperature in peach (Prunus persica F. atropurpurea)
  31. Zhang M, Leng P, Zhang G, Li X (2009) Cloning and functional analysis of 9-cis-epoxycarotenoid dioxygenase (NCED) genes encoding a key enzyme during abscisic acid biosynthesis from peach and grape fruits. J Plant Physol 166(12):1241-1252 https://doi.org/10.1016/j.jplph.2009.01.013
  32. Zhu C, Schraut D, Hartung W, Schaffner AR (2005) Differential responses of maize MIP genes to salt stress and ABA. J Exp Bot 56:2971-2981 https://doi.org/10.1093/jxb/eri294

Cited by

  1. Current status of peach genomics and transcriptomics research vol.42, pp.4, 2015, https://doi.org/10.5010/JPB.2015.42.4.312