DOI QR코드

DOI QR Code

Comparative GC-MS Based In vitro Assays of 5α-Reductase Activity Using Rat Liver S9 Fraction

  • Lee, Su-Hyeon (Future Convergence Research Division, Korea Institute of Science and Technology) ;
  • Lee, Dong-Hyoung (Future Convergence Research Division, Korea Institute of Science and Technology) ;
  • Lee, Jeong-Ae (Future Convergence Research Division, Korea Institute of Science and Technology) ;
  • Lee, Won-Yong (Department of Chemistry, Yonsei University) ;
  • Chung, Bong-Chul (Future Convergence Research Division, Korea Institute of Science and Technology) ;
  • Choi, Man-Ho (Future Convergence Research Division, Korea Institute of Science and Technology)
  • Received : 2012.03.01
  • Accepted : 2012.03.12
  • Published : 2012.03.15

Abstract

$5{\alpha}$-Dihydrotestosterone (DHT) is the primary active metabolite of testosterone, catalyzed by $5{\alpha}$-reductase ($5{\alpha}R$) in the skin, prostate, and liver. In this study, the $5{\alpha}R$ activity in rat liver S9 fraction in the presence of a NADPH-generating system was evaluated and compared by gas chromatography-mass spectrometry (GC-MS)-based in vitro assays. Testosterone and a $5{\alpha}R$ inhibitor, finasteride, were added to the S9 fractions and incubated at $37^{\circ}C$ for 1 h. Both testosterone and DHT were quantitatively measured and compared with two different GC-MS-based steroid profiling techniques. DHT was not detected by conventional GC-MS analysis in the absence of finasteride when the concentration of testosterone in the S9 fraction was less than $0.2{\mu}M$, whereas the isotope-dilution GC-MS (GC-IDMS) system was able to evaluate the $5{\alpha}R$ activity. Because the S9 fraction contains more reactive enzymes and is easier to collect from tissues compared with a microsomal solution, the combination of the S9 fraction and GC-IDMS technique may be a promising assay for evaluating the $5{\alpha}R$ activity in large-scale clinical studies.

Keywords

References

  1. Nuck, B. A.; Lucky, A. W. J. Invest. Dermatol. 1987, 89, 209211.
  2. Starka, L. Endocr. Regul. 1993, 27, 43.
  3. Choi, M. H.; Yoo, Y. S.; Chung, B. C. J. Invest. Dermatol. 2001, 116, 57. https://doi.org/10.1046/j.1523-1747.2001.00188.x
  4. Glrmley, G. J.; Stoner, E.; Rittmaster, R. S.; Gregg, H.; Thompson, D. L.; Lasseter, K. C.; Vlasses, P. H.; Stein, E. A. J. Clin. Endocriol. Metabol. 1990, 70, 1136. https://doi.org/10.1210/jcem-70-4-1136
  5. Lee, S. H.; Woo, H. M.; Jung, B. H.; Lee, J. A.; Kwon O. S.; Pyo, H. S.; Choi, M. H.; Chung, B. C. Anal. Chem. 2007, 79, 6102. https://doi.org/10.1021/ac070237e
  6. Falk, R. T.; Xu, X.; Keefer, L.; Veenstra, T. D.; Ziegler, R. G. Cancer Epidemiol. Biomarkers Prev. 2008, 17, 3411. https://doi.org/10.1158/1055-9965.EPI-08-0355
  7. Taieb, J.; Mathian, B.; Millot, F.; Patricot, M.C.; Mathieu, E.; Queyrel, N.; Lacroix, I.; Somma-Delpero, C.; Boudou, P. Clin. Chem. 2003, 49, 1381. https://doi.org/10.1373/49.8.1381
  8. Wang, C.; Catlin, D. H.; Starcevic, B.; Leung, A.; DiStefano, E.; Lucas, G.; Hull, L.; Swerdloff, R. S. J. Clin. Endocrinol. Metab. 2004, 89, 2936. https://doi.org/10.1210/jc.2003-031802
  9. Payne, A. H.; Hales, D. B. Endocr. Rev. 2004, 25, 947. https://doi.org/10.1210/er.2003-0030
  10. Choi, M. H.; Hahm, J. R.; Jung, B. H.; Chung, B. C. Clin. Chim. Acta 2002, 320, 95. https://doi.org/10.1016/S0009-8981(02)00050-5
  11. Cawood, M. L.; Field, H. P.; Ford, C. G.; Gillingwater, S.; Kicman, A.; Cowan, D.; Barth, J. H. Clin. Chem. 2005, 51, 1472.
  12. Tai, S. S.; Xu, B.; Welch, M. J.; Phinney, K. W. Anal. Bioanal. Chem. 2007, 388, 1087. https://doi.org/10.1007/s00216-007-1355-3
  13. Ha, Y. W.; Moon, J.-Y.; Jung, H.-J.; Chung, B. C.; Choi, M. H. J. Chromatogr. B 2009, 877, 4125. https://doi.org/10.1016/j.jchromb.2009.11.010
  14. Lee, S. H.; Choi, M. H.; Lee, W. Y.; Chung, B. C. Mass Spectrom. Lett. 2010, 1, 29. https://doi.org/10.5478/MSL.2010.1.1.029
  15. Rijk, J. C.; Bovee, T. F.; Groot, M. J.; Peijnenburg, A. A.; Nielen, M. W. Anal. Bioanal. Chem. 2008, 392, 417. https://doi.org/10.1007/s00216-008-2275-6
  16. Moon, J.-Y.; Jung, H.-J.; Moon, M. H.; Chung, B. C.; Choi, M. H. J. Am. Soc. Mass Spectrom. 2009, 20, 1626. https://doi.org/10.1016/j.jasms.2009.04.020
  17. Okuda, K.; Fukuuchi, T.; Takiguchi, M.; Yoshihara, S. Drug Metab. Dispos. 2011, 39, 1696. https://doi.org/10.1124/dmd.111.040121
  18. Brian, C.; Andrew, E. Nat. Protoc. 2006, 1, 1872. https://doi.org/10.1038/nprot.2006.273
  19. Chalbot, S.; Morfin, R. Drug Metab. Dispos. 2005, 33, 563. https://doi.org/10.1124/dmd.104.003004

Cited by

  1. Bringing GC-MS profiling of steroids into clinical applications vol.34, pp.2, 2015, https://doi.org/10.1002/mas.21436
  2. Liquid Chromatography-Mass Spectrometry-BasedIn VitroMetabolic Profiling Reveals Altered Enzyme Expressions in Eicosanoid Metabolism vol.36, pp.4, 2016, https://doi.org/10.3343/alm.2016.36.4.342
  3. Mass spectrometry-based metabolic signatures of sex steroids in breast cancer 2017, https://doi.org/10.1016/j.mce.2017.09.023
  4. Photonic Molecularly Imprinted Polymer Film for the Detection of Testosterone in Aqueous Samples vol.10, pp.4, 2018, https://doi.org/10.3390/polym10040349