DOI QR코드

DOI QR Code

GRP 복합관의 열팽창계수 측정

Measurements of Thermal Expansion Coefficients in GRP Pipe

  • 오진오 (금오공과대학교 기계공학과 대학원) ;
  • 윤성호 (금오공과대학교 기계공학과)
  • 투고 : 2011.12.19
  • 심사 : 2012.02.06
  • 발행 : 2012.02.28

초록

본 연구에서는 스트레인게이지 회로를 이용하여 GRP 복합관의 열팽창계수를 측정하고자 하였다. 이를 위해 다양한 스트레인게이지 회로를 적용하여 알루미늄 보의 열팽창계수를 측정함으로써 측정방법의 타당성을 검증하였다. 또한 스트레인게이지의 부착위치와 반복횟수를 달리하며 또한 열팽창계수가 다른 스트레인게이지를 적용한 경우에 대해 GRP 복합관의 길이방향 및 원주방향 열팽창계수를 측정함으로써 열변형률 결과와 측정결과의 재현성에 미치는 영향을 조사하였다. 연구결과에 따르면 GRP 복합관의 경우 보강된 유리섬유에 의해 원주방향의 열변형률이 제한되어 원주방향 열팽창계수가 길이방향의 열팽창계수에 비해 낮게 나타났다. 또한 GRP 복합관의 후경화로 인해 측정횟수가 증가할수록 측정된 열팽창계수는 다소 증가하지만 증가폭은 점차 감소하였다. 아울러 열팽창계수가 다른 스트레인게이지를 적용하더라도 기준보상시편을 통해 스트레인게이지의 열변형률을 보상하면 동일한 열팽창계수가 얻어짐을 알 수 있었다.

This study was focused on the measurement of thermal expansion coefficients for GRP pipe through strain gage circuits. First of all, thermal expansion coefficients of aluminum beam were measured to examine the validity of the suggested method by using various types of strain gage circuits. Thermal expansion coefficients of GRP pipes along axial and hoop directions were measured to investigate the effect of the location of strain gages, number of repeated measurements, and strain gage types with different thermal expansion coefficients on the thermal strains and the repeatability of measured results. According to the results, thermal expansion coefficients of GRP pipes along hoop direction were lower than those along axial direction due to the constraint effect of reinforced glass fibers on thermal strains along hoop direction. As measurements were repeated, thermal expansion coefficients of GRP pipes were slightly increased, but the degree of increase became smaller. Finally, the same thermal expansion coefficients were obtained irrespective of different types of strain gages with different thermal expansion coefficients if thermal strains of strain gages were compensated by using reference compensation specimen.

키워드

참고문헌

  1. Deng, D.Q., and Xu, L., "Measurements of Thermal Expansion Coefficient of Phenolic Foam at Low Temperatures," Journal of Crogenics, Vol. 43, No. 8, 2003, pp. 465-468. https://doi.org/10.1016/S0011-2275(03)00122-X
  2. Mukhopadhyay, A.K., and Zollinger, D.G., "Development of Dilatometer Test Method to Measure Coefficient of Thermal Expansion of Aggregates," Journal of Materials in Civil Engineering, Vol. 21, No. 12, 2009, pp. 781-788. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:12(781)
  3. Loser, R., Munch, B., and Lura, P., "A Volumetric Technique for Measuring the Coefficient of Thermal Expansion of Hardening Cement Paste and Mortar," Journal of Cement and Concrete Research, Vol. 40, No. 7, 2010, pp. 1138-1147. https://doi.org/10.1016/j.cemconres.2010.03.021
  4. Bing, P., Hui-min, X., Tao, H., and Asundi, A., "Measurement of Coefficient of Thermal Expansion of Films Using Digital Image Correlation Method," Journal of Polymer Testing, Vol. 28, No. 1, 2009, pp. 75-83. https://doi.org/10.1016/j.polymertesting.2008.11.004
  5. ASTM D5335, "Standard Method for Linear Coefficient of Thermal Expansion of Rock Using Bonded Electric Resistance Strain Gages," Annual Book of ASTM, Vol. 04.08, 1999.
  6. Versluis, A., Douglas, W.H., and Sakaguchi, R.L., "Thermal Expansion Coefficient of Dental Composites Measured with Strain Gauges," Journal of Dental Materials, Vol. 12, No. 5, 1996, pp. 290-294. https://doi.org/10.1016/S0109-5641(96)80036-4
  7. Wang, H., Zhou, X., Sun, L., Dong, J., and Yu, S., "The Effect of Stress Levels on the Coefficient of Thermal Expansion of a Fine-Grained Isotropic Nuclear Graphite," Journal of Nuclear Engineering and Design, Vol. 239, No. 3, 2009, pp. 484-489. https://doi.org/10.1016/j.nucengdes.2008.11.004
  8. Goo, N.S., Kwon, Y.D., Kim, J.S., and Yoon, K.J., "Measurement Method of Strain/Stress in a Variable Temperature Environment and Its Application to Measurement of CTE of a Composite," Journal of Korean Society for Aeronautical and Space Sciences, Vol. 29, No. 2, 2001, pp. 43-51.
  9. Kim, J.S., and Yoon, K.J., "Characterization of Thermal Expansion Coefficients of Carbon/Epoxy Composite for Temperature Variation," Journal of Korean Society for Composite Materials, Vol. 12, No. 6, 1999, pp. 1-7.
  10. Park, C., Cheon, D.S., Synn, J.H., Kim, H.M., and Park, Y.J., "Measurement of Thermal Expansion Coefficient of Rock using Strain Gauge," Journal of Korean Society for Rock Mechanics, Vol. 17, No. 6, 2007, pp. 475-483.
  11. Vishay Micro-measurement, "Measurement of Thermal Expansion Coefficient Using Strain Gage," Measurements Group TECH NOTE TN-513-1, 2007.
  12. Vishay Micro-measurement, "Strain gage Thermal Output and Gage Factor Variation with Temperature," Measurements Group TECH NOTE TN-504-1, 2007.