References
- H. Hoppe and N. S. Sariciftci, "Organic solar cells: an overview," J. Mater Res. 19, 1924-1945 (2004). https://doi.org/10.1557/JMR.2004.0252
- V. Andersson, K. Tvingstedt, and O. Inganas, "Optical modeling of a folded organic solar cell," J. Appl. Phys. 103, 094520 (2008). https://doi.org/10.1063/1.2917062
- J. Li, H. Yu, S. M. Wong, G. Zhang, X. Sun, P. G.-Q. Lo, and D.-L. Kwong, "Si nanopillar array optimization on Si thin films for solar energy harvesting," Appl. Phys. Lett. 95, 033102 (2009). https://doi.org/10.1063/1.3186046
- M. Niggemann, M. Riede, A. Gombert, and K. Leo, "Light trapping in organic solar cells," Phys. Stat. Sol. (a) 205, 2862-2874 (2008). https://doi.org/10.1002/pssa.200880461
- S. C. Kim and I. Sohn, "Simulation of energy conversion efficiency of a solar cell with gratings," J. Opt. Soc. Korea 14, 142-145 (2010). https://doi.org/10.3807/JOSK.2010.14.2.142
- L. A. A. Pettersson, L. S. Roman, and O. Inganas, "Modeling photocurrent action spectra of photovoltaic devices based on organic thin films," J. Appl. Phys. 86, 487-496 (1999). https://doi.org/10.1063/1.370757
- P. Peumans, A. Yakimov, and S. R. Forrest, "Small molecular weight organic thin-film photodetectors and solar cells," J. Appl. Phys. 93, 3693-3723 (2003). https://doi.org/10.1063/1.1534621
- N.-K. Persson, H. Arwin, and O. Inganas, "Optical optimization of polyfluorene-fullerene blend photodiodes," J. Appl. Phys. 97, 034503 (2005). https://doi.org/10.1063/1.1836005
- G. Dennler, K. Forberich, M. C. Scharber, C. J. Brabec, I. Tomiš, K. Hingerl, and T. Fromherz, "Angle dependence of external and internal quantum efficiencies in bulk-heterojunction organic solar cells," J. Appl. Phys. 102, 054516 (2007). https://doi.org/10.1063/1.2777724
- D. Cheyns, B. P. Rand, B. Verreet, J. Genoe, J. Poortmans, and P. Heremans, "The angular response of ultrathin film organic solar cells," Appl. Phys. Lett. 92, 243310 (2008). https://doi.org/10.1063/1.2949745
- A. Meyer and H. Ade, "The effect of angle of incidence on the optical field distribution within thin film organic solar cells," J. Appl. Phys. 106, 113101 (2009). https://doi.org/10.1063/1.3253718
- B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, New Jersey, USA, 2007), Chapter 6.
- M. Agrawal and P. Peumans, "Broadband optical absorption enhancement through coherent light trapping in thin-film photovoltaic cells," Opt. Express 16, 5385 (2008). https://doi.org/10.1364/OE.16.005385
- P. D. Andersen, J. C. Skarhoj, J. W. Andreasen, and F. C. Krebs, "Investigation of optical spacer layers from solution based precursors for polymer solar cells using x-ray reflectometry," Opt. Mater. 31, 1007-1012 (2009). https://doi.org/10.1016/j.optmat.2008.11.014
Cited by
- Illumination angle and layer thickness influence on the photo current generation in organic solar cells: A combined simulative and experimental study vol.5, pp.7, 2015, https://doi.org/10.1063/1.4928074
- A Generalized Fabry–Pérot Formulation for Optical Modeling of Organic Light-Emitting Diodes Considering the Dipole Orientation and Light Polarization vol.8, pp.2, 2016, https://doi.org/10.1109/JPHOT.2016.2535309
- Effect of an Incoherent Glass Substrate on the Absorption Efficiency of Organic Solar Cells at Oblique Incidence Analyzed by the Transfer Matrix Method with a Glass Factor vol.52, pp.5R, 2013, https://doi.org/10.7567/JJAP.52.052301
- Effect of incidence angle and polarization on the optimized layer structure of organic solar cells vol.118, 2013, https://doi.org/10.1016/j.solmat.2013.07.040
- Effect of Sunlight Polarization on the Absorption Efficiency of V-shaped Organic Solar Cells vol.18, pp.1, 2014, https://doi.org/10.3807/JOSK.2014.18.1.009
- Optimization of multilayer structures for V-shaped organic solar cells vol.53, pp.12, 2014, https://doi.org/10.7567/JJAP.53.122304
- Parametrization of the Optical Constants of AlAsxSb1-x Alloys in the Range 0.74-6.0 eV vol.18, pp.4, 2014, https://doi.org/10.3807/JOSK.2014.18.4.359
- Simulation of Rough Surface of CIGS (CuInGaSe) Solar Cell by RCWA (Rigorous Coupled Wave Analysis) Considering the Incoherency of Light vol.18, pp.2, 2014, https://doi.org/10.3807/JOSK.2014.18.2.180
- Integrated optoelectronic model for organic solar cells based on the finite element method including the effect of oblique sunlight incidence and a non-ohmic electrode contact vol.55, pp.10, 2016, https://doi.org/10.7567/JJAP.55.102301
- Optical Simulation Study on the Effect of Diffusing Substrate and Pillow Lenses on the Outcoupling Efficiency of Organic Light Emitting Diodes vol.17, pp.3, 2013, https://doi.org/10.3807/JOSK.2013.17.3.269
- Angle dependence of transparent photovoltaics in conventional and optically inverted configurations vol.103, pp.13, 2013, https://doi.org/10.1063/1.4823462
- Proposal of highly efficient photoemitter with strong photon-harvesting capability and exciton superradiance vol.111, pp.6, 2017, https://doi.org/10.1063/1.4998444
- Theoretical comparison of the excitation efficiency of waveguide and surface plasmon modes between quantum-mechanical and electromagnetic optical models of organic light-emitting diodes vol.26, pp.22, 2018, https://doi.org/10.1364/OE.26.00A955
- Enhancing Reproducibility and Nonlocal Effects in Film-Coupled Nanoantennas pp.21951071, 2018, https://doi.org/10.1002/adom.201801177
- Organic Photovoltaics over Three Decades vol.30, pp.35, 2018, https://doi.org/10.1002/adma.201800388
- Theoretical Modeling of the Internal Power Flow and Absorption Loss of the Air Mode Based on the Proposed Poynting Vector Analysis in Top-emitting Organic Light-emitting Diodes vol.73, pp.11, 2018, https://doi.org/10.3938/jkps.73.1663