References
- Robin, M. B. Inorg. Chem. 1962, 1, 337. https://doi.org/10.1021/ic50002a028
- Buser, H. J.; Schwarzenbach, D.; Petter, W.; Ludi, A. Inorg. Chem. 1977, 16, 2704. https://doi.org/10.1021/ic50177a008
- Sato, O.; Iyoda, T.; Fujishima, A.; Hashimoto, K. Science 1996, 272, 704. https://doi.org/10.1126/science.272.5262.704
- Pajerowski, D. M.; Gardner, J. E.; Frye, F. A.; Andrus, M. J.; Dumont, M. F.; Knowles, E. S.; Meisel, M. W.; Tallham, D. R. Chem. Mater. 2011, 23, 3045. https://doi.org/10.1021/cm2003337
- Culp, J. T.; Park, J. H.; Frye, F.; Huh, Y. D.; Meisel, M. W.; Talham, D. R. Coord. Chem. Rev. 2005, 249, 2642. https://doi.org/10.1016/j.ccr.2005.05.011
- Pajerowski, D. M.; Gardner, J. E.; Talham, D. R.; Meisel, M. W. J. Am. Chem. Soc. 2009, 131, 12927. https://doi.org/10.1021/ja9012672
- Bleuzen, A.; Lomenech, C.; Escax, V.; Villain, F.; Varret, F.; Moulin, C. C. D.; Verdaguer, M. J. Am. Chem. Soc. 2000, 122, 6648. https://doi.org/10.1021/ja000348u
- Liu, H. W.; Matsuda, K.; Gu, Z. Z.; Takahashi, K.; Cui, A. L.; Nakajima, R.; Fujishima, A.; Sato, O. Phys. Rev. Lett. 2003, 90, 167403. https://doi.org/10.1103/PhysRevLett.90.167403
- Tokoro, H.; Ohkoshi, S. I. Dalton Trans. 2011, 40, 6825. https://doi.org/10.1039/c0dt01829e
- Chapman, K. W.; Southon, P. D.; Weeks, C. L.; Kepert, C. J. Chem. Commun. 2005, 3322.
- Jimenez-Gallegos, J.; Rodriguez-Hernandez, J.; Yee-Madeira, H.; Reguera, E. J. Phys. Chem. C 2010, 114, 5043. https://doi.org/10.1021/jp910544j
- Kaye, S. S.; Long, J. R. J. Am. Chem. Soc. 2005, 127, 6506. https://doi.org/10.1021/ja051168t
- de Tacconi, N. R.; Rajeshwar, K. Chem. Mater. 2003, 15, 3046. https://doi.org/10.1021/cm0341540
- Koncki, R.; Lenarczuk, T.; Radomska, A.; Glab, S. Analyst 2001, 126, 1080. https://doi.org/10.1039/b103044m
- Ricci, F.; Palleschi, G. Biosens. Bioelectron. 2005, 21, 389. https://doi.org/10.1016/j.bios.2004.12.001
- Sun, H. L.; Shi, H.; Zhao, F.; Qi, L.; Gao, S. Chem. Commun. 2005, 4339.
- Cao, M.; Wu, X.; He, X.; Hu, C. Chem. Commun. 2005, 2241.
- Shen, X.; Wu, S.; Liu, Y.; Wang, K.; Xu, Z.; Liu, W. J. Colloid Interface Sci. 2009, 329, 188. https://doi.org/10.1016/j.jcis.2008.09.067
- Xu, S.; Qian, X.; Li, G. Mater. Res. Bull. 2008, 43, 135. https://doi.org/10.1016/j.materresbull.2007.02.009
- Hu, M.; Jiang, J. S; Ji, R. P.; Zeng, Y. CrystEngComm 2009, 11, 2257. https://doi.org/10.1039/b911613n
- Yang, J.; Wang, H.; Lu, L.; Shi, W.; Zhang, H. Cryst. Growth Des. 2006, 6, 2438. https://doi.org/10.1021/cg060469r
- Hu, M.; Jiang, J. S. Mater. Res. Bull. 2011, 46, 702. https://doi.org/10.1016/j.materresbull.2011.01.017
- Vaucher, S.; Li, M.; Mann, S. Angew. Chem. Int. Ed. 2000, 39, 1793. https://doi.org/10.1002/(SICI)1521-3773(20000515)39:10<1793::AID-ANIE1793>3.0.CO;2-Y
- Weast, R. C. Handbook of Chemistry and Physics, 70th ed.; 1989; F-187.
Cited by
- X-ray Absorption Study of Structural Coupling in Photomagnetic Prussian Blue Analogue Core@Shell Particles vol.26, pp.8, 2014, https://doi.org/10.1021/cm4042007
- Motion-Driven Electrochromic Reactions for Self-Powered Smart Window System vol.9, pp.5, 2015, https://doi.org/10.1021/acsnano.5b00706
- Single-Crystal-like Nanoporous Spinel Oxides: A Strategy for Synthesis of Nanoporous Metal Oxides Utilizing Metal-Cyanide Hybrid Coordination Polymers vol.20, pp.52, 2014, https://doi.org/10.1002/chem.201404054
- Prussian Blue Analogue Mesoframes for Enhanced Aqueous Sodium-ion Storage vol.8, pp.1, 2018, https://doi.org/10.3390/cryst8010023
- Progress in Applications of Prussian Blue Nanoparticles in Biomedicine pp.21922640, 2018, https://doi.org/10.1002/adhm.201800347
- Solvothermal Synthesis of Supercrystals of Hematite via the Self-assembly of Nanocubes vol.35, pp.6, 2012, https://doi.org/10.5012/bkcs.2014.35.6.1837
- Recent advances in Prussian blue and Prussian blue analogues: synthesis and thermal treatments vol.352, pp.None, 2012, https://doi.org/10.1016/j.ccr.2017.09.014
- Prussian Blue Microcrystals with Morphology Evolution as a High-Performance Photo-Fenton Catalyst for Degradation of Organic Pollutants vol.11, pp.1, 2019, https://doi.org/10.1021/acsami.8b14987
- Concentration as a trigger to improve electrocatalytic activity of a Prussian blue analogue in glucose oxidation vol.21, pp.36, 2012, https://doi.org/10.1039/c9ce00947g
- Toward the Design of High‐performance Supercapacitors by Prussian Blue, its Analogues and their Derivatives vol.3, pp.3, 2020, https://doi.org/10.1002/eem2.12096
- Visualisation of H 2 O 2 penetration through skin indicates importance to develop pathway-specific epidermal sensing vol.187, pp.12, 2012, https://doi.org/10.1007/s00604-020-04633-9