DOI QR코드

DOI QR Code

Kinetics and Mechanism of the Anilinolysis of (2R,4R,5S)-(+)-2-Chloro-3,4-dimethyl -5-phenyl-1,3,2-oxazaphospholidine 2-Sulfide in Acetonitrile

  • Received : 2012.01.04
  • Accepted : 2012.02.06
  • Published : 2012.03.20

Abstract

The nucleophilic substitution reactions of (2R,4R,5S)-(+)-2-chloro-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine 2-sulfide (3) with substituted anilines ($XC_6H_4NH_2$) and deuterated anilines ($XC_6H_4ND_2$) are investigated kinetically in acetonitrile at $5.0^{\circ}C$. The anilinolysis rate of 3 involving a cyclic five-membered ring is considerably fast because of small negative value of the entropy of activation (${\Delta}S^\neq=-2cal\;mol^{-1}\;K^{-1}$) over considerably unfavorable enthalpy of activation (${\Delta}H^\neq=18.0\;kcal\;mol^{-1}$). Great enthalpy and small negative entropy of activation are ascribed to sterically congested transition state (TS) and bulk solvent structure breaking in the TS. A concerted $S_N2$ mechanism with a backside nucleophilic attack is proposed on the basis of the secondary inverse deuterium kinetic isotope effects, $k_H/k_D$ < 1.

Keywords

References

  1. Barai, H. R.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 4185. https://doi.org/10.5012/bkcs.2011.32.12.4185
  2. Dey, N. K.; Hoque, M. E. U.; Kim, C. K.; Lee, B. S.; Lee, H. W. J. Phys. Org. Chem. 2008, 21, 544. https://doi.org/10.1002/poc.1314
  3. Barai, H. R.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 3355. https://doi.org/10.5012/bkcs.2011.32.9.3355
  4. Hoque, M. E. U.; Dey, N. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. Org. Biomol. Chem. 2007, 5, 3944. https://doi.org/10.1039/b713167d
  5. Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165. https://doi.org/10.1021/cr00002a004
  6. Streitwieser, A. Jr.; Heathcock, C. H.; Kosower, E. M. Introduction to Organic Chemistry, 4th ed.; Macmillan: New York, 1992; p 735.
  7. Crumpler, T. B.; Yoh, J. H. Chemical Computations and Errors; John Wiley: New York, 1940; p 178.
  8. Ritchie, C. D. In Solute-Solvent Interactions; Coetzee, J. F., Ritchie, C. D., Eds.; Marcel Dekker, New York, 1969; Chapter 4.
  9. Coetzee, J. F. Prog. Phys. Org. Chem. 1967, 4, 54.
  10. Spillane, W. J.; Hogan, G.; McGrath, P.; King, J.; Brack, C. J. Chem. Soc., Perkin Trans. 2 1996, 2099.
  11. Oh, H. K.; Woo, S. Y.; Shin, C. H.; Park, Y. S.; Lee, I. J. Org. Chem. 1997, 62, 5780. https://doi.org/10.1021/jo970413r
  12. Perrin, C. I.; Engler, R. E. J. Phys. Chem. 1991, 95, 8431. https://doi.org/10.1021/j100175a004
  13. Perrin, C. I.; Ohta, B. K.; Kuperman, J. J. Am. Chem. Soc. 2003, 125, 15008. https://doi.org/10.1021/ja038343v
  14. Perrin, C. I.; Ohta, B. K.; Kuperman, J.; Liberman, J.; Erdelyi, M. J. Am. Chem. Soc. 2005, 127, 9641. https://doi.org/10.1021/ja0511927
  15. Hengge, A. C.; Onyido, I. Curr. Org. Chem. 2005, 9, 61. https://doi.org/10.2174/1385272053369349
  16. Omakor, J. E.; Onyido, I.; vanLoon, G. W.; Buncel, E. J. Chem. Soc., Perkin Trans. 2 2001, 324.
  17. Gregersen, B. A.; Lopez, X.; York, D. M. J. Am. Chem. Soc. 2003, 125, 7178. https://doi.org/10.1021/ja035167h
  18. Hondal, R. J.; Bruzik, K. S.; Zhao, Z.; Tsai, M. D. J. Am. Chem. Soc. 1997, 119, 5477. https://doi.org/10.1021/ja964217y
  19. Onyido, I.; Swierczek, K.; Purcell, J.; Hengge, A. C. J. Am. Chem. Soc. 2005, 127, 7703. https://doi.org/10.1021/ja0501565
  20. Holtz, K. M.; Catrina, I. E.; Hengge, A. C.; Kantrowitz, E. R. Biochemistry 2000, 39, 9451. https://doi.org/10.1021/bi000899x
  21. Liu, Y.; Gregersen, B. A.; Hengge, A. C.; York, D. M. Biochemistry 2006, 45, 10043. https://doi.org/10.1021/bi060869f
  22. Zhang, L.; Xie, D.; Xu, D.; Guo, H. J. Phys. Chem. A 2005, 109, 11295. https://doi.org/10.1021/jp054430t
  23. Hoque, M. E. U.; Dey, S.; Guha, A. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. J. Org. Chem. 2007, 72, 5493. https://doi.org/10.1021/jo0700934
  24. Dey, N. K.; Han, I. S.; Lee, H. W. Bull. Korean Chem. Soc. 2007, 28, 2003. https://doi.org/10.5012/bkcs.2007.28.11.2003
  25. Dey, N. K.; Hoque, M. E. U.; Kim, C. K.; Lee, B. S.; Lee, H. W. J. Phys. Org. Chem. 2009, 22, 425. https://doi.org/10.1002/poc.1478
  26. Dey, N. K.; Kim, C. K.; Lee, H. W. Bull. Korean Chem. Soc. 2009, 30, 975. https://doi.org/10.5012/bkcs.2009.30.4.975
  27. Hoque, M. E. U.; Guha, A. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. Org. Biomol. Chem. 2009, 7, 2919. https://doi.org/10.1039/b903148k
  28. Dey, N. K.; Kim, C. K.; Lee, H. W. Org. Biomol. Chem. 2011, 9, 717. https://doi.org/10.1039/c0ob00517g
  29. Hoque, M. E. U.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 2306. https://doi.org/10.5012/bkcs.2011.32.7.2306
  30. Winstein, S.; Fainberg, A. H. J. Am. Chem. Soc. 1956, 78, 2770. https://doi.org/10.1021/ja01593a033
  31. Winstein, S.; Fainberg, A. H. J. Am. Chem. Soc. 1957, 79, 5937. https://doi.org/10.1021/ja01579a027
  32. Ingold, C. K. Structure and Mechanism in Organic Chemistry, 2nd ed.; Cornell University Press: Ithaca/N.Y. and London, 1969; p 457.
  33. Barai, H. R.; Lee, H. W. Bull. Korean Chem. Soc. 2011, 32, 4347. https://doi.org/10.5012/bkcs.2011.32.12.4347
  34. Lee, I.; Koh, H. J.; Lee, B. S.; Lee, H. W. J. Chem. Soc., Chem. Commun. 1990, 335.
  35. Lee, I. Chem. Soc. Rev. 1995, 24, 223. https://doi.org/10.1039/cs9952400223
  36. Marlier, J. F. Acc. Chem. Res. 2001, 34, 283. https://doi.org/10.1021/ar000054d
  37. Westaway, K. C. Adv. Phys. Org. Chem. 2006, 41, 217. https://doi.org/10.1016/S0065-3160(06)41004-2
  38. Villano, S. M.; Kato, S.; Bierbaum, V. M. J. Am. Chem. Soc. 2006, 128, 736. https://doi.org/10.1021/ja057491d
  39. Gronert, S.; Fajin, A. E.; Wong, L. J. Am. Chem. Soc. 2007, 129, 5330. https://doi.org/10.1021/ja070093l
  40. Poirier, R. A.; Youliang, W.; Westaway, K. C. J. Am. Chem. Soc. 1994, 116, 2526. https://doi.org/10.1021/ja00085a037
  41. Yamata, H.; Ando, T.; Nagase, S.; Hanamusa, M.; Morokuma, K. J. Org. Chem. 1984, 49, 631. https://doi.org/10.1021/jo00178a010
  42. Xhao, X. G.; Tucker, S. C.; Truhlar, D. G. J. Am. Chem. Soc. 1991, 113, 826. https://doi.org/10.1021/ja00003a015

Cited by

  1. Kinetics and Mechanism of the Pyridinolysis of (2R,4R,5S)-(+)-2-Chloro-3,4-dimethyl-5-phenyl-1,3,2-oxazaphospholidine 2-Sulfide in Acetonitrile vol.33, pp.3, 2012, https://doi.org/10.5012/bkcs.2012.33.3.1047
  2. Kinetics and Mechanism of the Aminolyses of Bis(2-oxo-3-oxazolidinyl) Phosphinic Chloride in Acetonitrile vol.34, pp.11, 2013, https://doi.org/10.5012/bkcs.2013.34.11.3218