DOI QR코드

DOI QR Code

Comparison of Alternate Approaches for Reversible Geminate Recombination

  • Khokhlova, Svetlana S. (The Fritz Haber Research Center, Institute of Chemistry, The Hebrew University of Jerusalem) ;
  • Agmon, Noam (The Fritz Haber Research Center, Institute of Chemistry, The Hebrew University of Jerusalem)
  • Received : 2011.12.07
  • Accepted : 2012.01.20
  • Published : 2012.03.20

Abstract

This work compares various models for geminate reversible diffusion influenced reactions. The commonly utilized contact reactivity model (an extension of the Collins-Kimball radiation boundary condition) is augmented here by a volume reactivity model, which extends the celebrated Feynman-Kac equation for irreversible depletion within a reaction sphere. We obtain the exact analytic solution in Laplace space for an initially bound pair, which can dissociate, diffuse or undergo "sticky" recombination. We show that the same expression for the binding probability holds also for "mixed" reaction products. Two different derivations are pursued, yielding seemingly different expressions, which nevertheless coincide numerically. These binding probabilities and their Laplace transforms are compared graphically with those from the contact reactivity model and a previously suggested coarse grained approximation. Mathematically, all these Laplace transforms conform to a single generic equation, in which different reactionless Green's functions, g(s), are incorporated. In most of parameter space the sensitivity to g(s) is not large, so that the binding probabilities for the volume and contact reactivity models are rather similar.

Keywords

References

  1. von Smoluchowski, M. Z. Physik. Chem. 1917, 92, 129-168.
  2. Carslaw, H. S.; Jaeger, J. C. Conduction of Heat in Solids, 2nd ed.; Oxford University Press: Oxford, 1959.
  3. Rice, S. A. Diffusion-Limited Reactions; Elsevier: Amsterdam, 1985; Vol. 25.
  4. Collins, F. C.; Kimball, G. E. J. Colloid Sci. 1949, 4, 425-437. https://doi.org/10.1016/0095-8522(49)90023-9
  5. Wilemski, G.; Fixman, M. J. Chem. Phys. 1973, 58, 4009-4019. https://doi.org/10.1063/1.1679757
  6. Goodrich, F. C. J. Chem. Phys. 1954, 22, 588-594. https://doi.org/10.1063/1.1740130
  7. Agmon, N. J. Chem. Phys. 1984, 81, 2811-2817. https://doi.org/10.1063/1.447954
  8. Agmon, N.; Weiss, G. H. J. Chem. Phys. 1989, 91, 6937-6942. https://doi.org/10.1063/1.457310
  9. Agmon, N.; Szabo, A. J. Chem. Phys. 1990, 92, 5270-5284. https://doi.org/10.1063/1.458533
  10. Kim, H.; Shin, K. J. Phys. Rev. Lett. 1999, 82, 1578-1581. https://doi.org/10.1103/PhysRevLett.82.1578
  11. Gopich, I. V.; Agmon, N. J. Chem. Phys. 1999, 110, 10433-10444. https://doi.org/10.1063/1.478974
  12. Pines, E.; Huppert, D.; Agmon, N. J. Chem. Phys. 1988, 88, 5620- 5630. https://doi.org/10.1063/1.454572
  13. Agmon, N. J. Phys. Chem. A 2005, 109, 13-35. https://doi.org/10.1021/jp047465m
  14. Markovitch, O.; Agmon, N. J. Chem. Phys. 2008, 129, 084505. https://doi.org/10.1063/1.2968608
  15. Chen, H.; Voth, G. A.; Agmon, N. J. Phys. Chem. B 2010, 114, 333-339. https://doi.org/10.1021/jp908126a
  16. Karlin, S.; Taylor, H. M. A Second Course in Stochastic Processes; Academic Press: San-Diego, 1981.
  17. Kac, M. On Some Connections between Probability Theory and Differential and Integral Equations. Proc. 2nd Berkeley Symp. Mathematical Statistics and Probability, Berkeley, 1951; pp 189- 215.
  18. Majumdar, S. N. Curr. Sci. 2005, 89, 2076-2092.
  19. Agmon, N. J. Phys. Chem. A 2011, 115, 5838-5846. https://doi.org/10.1021/jp1099877
  20. Luzar, A.; Chandler, D. Nature 1996, 379, 55-57. https://doi.org/10.1038/379055a0
  21. Luzar, A. J. Chem. Phys. 2000, 113, 10663-10675. https://doi.org/10.1063/1.1320826
  22. Gopich, I. V.; Solntsev, K. M.; Agmon, N. J. Chem. Phys. 1999, 110, 2164-2174. https://doi.org/10.1063/1.477827
  23. Agmon, N. Phys. Chem. Chem. Phys. 2011, 13, 16548-16557. https://doi.org/10.1039/c1cp20907h
  24. Krissinel', E. B.; Agmon, N. J. Comput. Chem. 1996, 17, 1085- 1098. https://doi.org/10.1002/(SICI)1096-987X(19960715)17:9<1085::AID-JCC1>3.0.CO;2-O
  25. Luzar, A. Private communication.
  26. Abate, J.; Whitt, W. ORSA J. Comput. 1995, 7, 36-43. https://doi.org/10.1287/ijoc.7.1.36

Cited by

  1. Fluorescence Correlation Spectroscopy and Nonlinear Stochastic Reaction–Diffusion vol.118, pp.25, 2014, https://doi.org/10.1021/jp5030125
  2. Reversible Excited-State Proton Geminate Recombination: Revisited vol.120, pp.49, 2016, https://doi.org/10.1021/acs.jpcb.6b09035
  3. Rate coefficients, binding probabilities, and related quantities for area reactivity models vol.141, pp.19, 2014, https://doi.org/10.1063/1.4901115
  4. Green's function for reversible geminate reaction with volume reactivity. vol.137, pp.18, 2012, https://doi.org/10.1063/1.4764357
  5. The area reactivity model of geminate recombination (12 pages) vol.140, pp.11, 2012, https://doi.org/10.1063/1.4868554
  6. General theory of multistage geminate reactions of isolated pairs of reactants. I. Kinetic equations. vol.140, pp.18, 2012, https://doi.org/10.1063/1.4874001