DOI QR코드

DOI QR Code

Direct Calculation Method for Excited-state Diffusion-influenced Reversible Reactions with an External Field

  • Reigh, Shang Yik (Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation) ;
  • Kim, Hyo-Joon (Department of Chemistry, Dong-A University)
  • Received : 2011.11.17
  • Accepted : 2012.01.12
  • Published : 2012.03.20

Abstract

The direct calculation method is generalized to the excited-state diffusion-influenced reversible reaction of a neutral and a charged particle under an external field with two different lifetimes and quenching in three dimensions. The present method provides an alternative way to calculate the binding probability density functions and the survival probabilities from the corresponding irreversible results. The solutions are obtained as the series solutions by the diagonal approximation due to the anisotropy of the unidirectional external field. The numerical results are found to be in good agreement with those of the previous study [S. Y. Reigh et al. J. Chem. Phys. 132, 164112 (2010)] within a weak field limit. The solutions of two approaches show qualitatively the same overall behavior including the power laws at long times.

Keywords

References

  1. Rice, S. A. In Diffusion-Limited Reactions, Comprehensive Chemical Kinetics; Bamford, C. H., Tipper, C. F. H., Compton, R. G., Eds.; Elsevier: Amsterdam, 1985; Vol. 25.
  2. Kim, H.; Yang, M.; Choi, M.-U.; Shin, K. J. J. Chem. Phys. 2001, 115, 1455. https://doi.org/10.1063/1.1381058
  3. Kim, H.; Shin, K. J. J. Phys.: Condens. Matter 2007, 19, 065137. https://doi.org/10.1088/0953-8984/19/6/065137
  4. Park, S.; Agmon, N. J. Phys. Chem. B 2008, 112, 5977. https://doi.org/10.1021/jp075941d
  5. Zwangzig, R.; Szabo, A. Biophys. J. 1991, 60, 671. https://doi.org/10.1016/S0006-3495(91)82096-3
  6. Traytak, S. D.; Barzykin, A. V. J. Chem. Phys. 2007, 127, 215103. https://doi.org/10.1063/1.2804328
  7. Ivanov, K. L.; Lukzen, N. N.; Doktorov, A. B.; Burshtein, A. I. J. Chem. Phys. 2001, 114, 1754. https://doi.org/10.1063/1.1317526
  8. Tachiya, M.; Seki, K. J. Phys. Chem. A 2007, 111, 9553. https://doi.org/10.1021/jp073930e
  9. Kim, H.; Hwang, H.; Rossky, P. J. J. Phys. Chem. A 2006, 110, 11223. https://doi.org/10.1021/jp063222d
  10. Solntsev, K. M.; Huppert, D.; Agmon, N. Phys. Rev. Lett. 2001, 86, 3427. https://doi.org/10.1103/PhysRevLett.86.3427
  11. Kim, H.; Kapral, R. J. Chem. Phys. 2006, 125, 234309. https://doi.org/10.1063/1.2404956
  12. Kim, H.; Kapral, R. ChemPhysChem 2008, 9, 470. https://doi.org/10.1002/cphc.200700709
  13. Dhont, J. K. G. An Introduction to Dynamics of Colloids; Elsevier: Amsterdam, 1996.
  14. Doi, M.; Edwards, S. F. The Theory of Polymer Dynamics; Clarendon Press: Oxford, 1986
  15. Wilemski, G.; Fixman, M. J. Chem. Phys. 1974, 60, 866. https://doi.org/10.1063/1.1681162
  16. Myers, S. M.; Wright, A. F. J. Appl. Phys. 2003, 93, 2608. https://doi.org/10.1063/1.1544076
  17. Kim, H.; Shin, K. J. J. Chem. Phys. 2004, 120, 9142. https://doi.org/10.1063/1.1704632
  18. Park, S.; Shin, K. J. Chem. Asian J. 2006, 1, 216. https://doi.org/10.1002/asia.200600076
  19. Park, S.; Shin, K. J. J. Phys. Chem. B 2008, 112, 6241. https://doi.org/10.1021/jp075933x
  20. Park, S.; Shin, K. J. Chem. Asian J. 2008, 3, 1266. https://doi.org/10.1002/asia.200800028
  21. Kim, H.; Shin, K. J.; Agmon, N. J. Chem. Phys. 2001, 114, 3905. https://doi.org/10.1063/1.1344607
  22. Chandrasekhar, S. Rev. Mod. Phys. 1943, 15, 1. https://doi.org/10.1103/RevModPhys.15.1
  23. Onsager, L. J. Chem. Phys. 1938, 54, 554. https://doi.org/10.1063/1.1674877
  24. Hong K. M.; Noolandi, J. J. Chem. Phys. 1978, 69, 5026. https://doi.org/10.1063/1.436493
  25. Tachiya, M. J. Chem. Phys. 1987, 87, 4622 https://doi.org/10.1063/1.452875
  26. Traytak, S. D.; Barzykin, A. V.; Tachiya, M. J. Chem. Phys. 2004, 120, 10111. https://doi.org/10.1063/1.1736629
  27. Reigh, S. Y.; Shin, K. J.; Tachiya, M. J. Chem. Phys. 2008, 129, 234501. https://doi.org/10.1063/1.3035986
  28. Reigh, S. Y.; Shin, K. J.; Kim, H. J. Chem. Phys. 2010, 132, 164112. https://doi.org/10.1063/1.3394894
  29. Tachiya, M. In Extended Abstract of Annual Meeting on Photochemistry, Tsukuba, Japan, 1980; p 256.
  30. Sano, H.; Tachiya, M. J. Chem. Phys. 1979, 71, 1276. https://doi.org/10.1063/1.438427
  31. Agmon, N.; Szabo, A. J. Chem. Phys. 1990, 92, 5270. https://doi.org/10.1063/1.458533
  32. Reigh, S. Y. Ph.D. thesis, Seoul National University, Korea, 2009.
  33. Abramowitz, M.; Stegun, I. A. Handbook of Mathematical Functions; Dover: New York, 1970.
  34. Press, W. H.; Flannery, B. P.; Teukosky, S. A.; Vetterling, W. T. Numerical Recipes in Fortran; Cambridge University Press: Cambridge, 1992.

Cited by

  1. Monte Carlo Simulation Methods for External Field Effects on Diffusion-Influenced Reactions vol.35, pp.4, 2014, https://doi.org/10.5012/bkcs.2014.35.4.1209
  2. Exact Fundamental Function for the One-Dimensional Random Walk with a Perfect Mirror under the External Field vol.37, pp.10, 2016, https://doi.org/10.1002/bkcs.10921
  3. Fundamental Function for the Random Walk Simulation under the External Field in One Dimension vol.35, pp.10, 2012, https://doi.org/10.5012/bkcs.2014.35.10.3089
  4. Multiple external field effects on diffusion-limited reversible reactions for a geminate pair with no interparticle interactions (8 pages) vol.143, pp.8, 2012, https://doi.org/10.1063/1.4928641