DOI QR코드

DOI QR Code

Multistep Quantum Master Equation Theory for Response Functions in Four Wave Mixing Electronic Spectroscopy of Multichromophoric Macromolecules

  • Jang, Seog-Joo (Department of Chemistry and Biochemistry, Queens College of the City University of New York)
  • 투고 : 2011.12.10
  • 심사 : 2012.01.29
  • 발행 : 2012.03.20

초록

This work provides an alternative derivation of third order response functions in four wave mixing spectroscopy of multichromophoric macromolecular systems considering only single exciton states. For the case of harmonic oscillator bath linearly and diagonally coupled to exciton states, closed form expressions showing all the explicit time dependences are derived. These expressions can provide more solid physical basis for understanding 2-dimensional electronic spectroscopy signals. For more general cases of system-bath coupling, the quantum master equation (QME) approach is employed for the derivation of multistep time evolution equations for Green function-like operators. Solution of these equations is feasible at the level of 2nd order non-Markovian QME, and the new approach can account for inter-exciton coupling, dephasing, relaxation, and non-Markovian effects in a consistent manner.

키워드

참고문헌

  1. Sundstrom, V.; Pullerits, T.; vanGrondelle, R. J. Phys. Chem. B 1999, 103, 2327 https://doi.org/10.1021/jp983722+
  2. Hu, X.; Ritz, T.; Damjanovic, A.; Autenrieth, F.; Schulten, K. Quar. Rev. Biophys. 2002, 35, 1.
  3. Renger, T.; May, V.; Kühn, O. Phys. Rep. 2001, 343, 137. https://doi.org/10.1016/S0370-1573(00)00078-8
  4. Cogdell, R. J.; Gali, A.; Köhler, J. Quart. Rev. Biophys. 2006, 39, 227. https://doi.org/10.1017/S0033583506004434
  5. Heeger, A. J. Rev. Mod. Phys. 2000, 73, 681. https://doi.org/10.1103/RevModPhys.73.681
  6. Beljonne, D.; Hennebicq, E.; Daniel, C.; Herz, L. M.; Silva, C.; Scholes, G. D.; Hoeben, F. J. M.; Jonkheijm, P.; Schenning, A. P. H. J.; Meskers, S. C. J.; Phillips, R. T.; Friend, R. H.; Meijer, E. W. J. Phys. Chem. B 2005, 109, 10594. https://doi.org/10.1021/jp050792p
  7. Gaab, K. M.; Bardeen, C. J. J. Phys. Chem. B 2004, 108, 4619. https://doi.org/10.1021/jp036120l
  8. Lim, S.-H.; Bjorklund, T. G.; Gaab, K. M.; Bardeen, C. J. J. Chem. Phys. 2002, 117, 454. https://doi.org/10.1063/1.1481760
  9. Collini, E.; Scholes, G. D. Science 2009, 323, 369. https://doi.org/10.1126/science.1164016
  10. Spano, F. C. Annu. Rev. Phys. Chem. 2006, 57, 217 https://doi.org/10.1146/annurev.physchem.57.032905.104557
  11. Kopelman, R.; Shortreed, M.; Shi, Z.-Y.; Tan, W.; Xu, Z.; Moore, J. S.; Bar-Haim, A.; Klafter, J. Phys. Rev. Lett. 1997, 78, 1239. https://doi.org/10.1103/PhysRevLett.78.1239
  12. Ranasinghe, M.; Wang, Y.; Goodson, T. III, J. Am. Chem. Soc. 1999, 83, 4456.
  13. Hofkens, J.; Maus, M.; Gensch, T.; Vosch, T.; Cotlet, Kohn, F.; Hermann, A.; M.; Kullen, De Schryver, F. C. J. Am. Chem. Soc. 2000, 122, 9278. https://doi.org/10.1021/ja0012570
  14. Ahn, T.-S.; Nantalaksakul, A.; Dasari, R. R.; Al-Kaysi, R. O.; Müller, A. M.; Thayumanavan, S.; Bardeen, C. J. J. Phys. Chem. B 2006, 110, 24331. https://doi.org/10.1021/jp0649706
  15. Peng, Z.; Melinger, J.; Kleiman, V. Photosyn. Res. 2006, 87, 115. https://doi.org/10.1007/s11120-005-8534-x
  16. Yang, M.; Agarwal, R.; Fleming, G. R. J. Photochem. Photobiol. A: Chemistry 2001, 142, 107. https://doi.org/10.1016/S1010-6030(01)00504-4
  17. Jang, S.; Newton, M. D.; Silbey, R. J. Phys. Rev. Lett. 2004, 92, 218301. https://doi.org/10.1103/PhysRevLett.92.218301
  18. Jang, S.; Newton, M. D.; Silbey, R. J. J. Phys. Chem. B 2007, 111, 6807. https://doi.org/10.1021/jp070111l
  19. Yang, M.; Damjanovi , A.; Vaswani, H. M.; Fleming, G. R. Biophys. J. 2003, 85, 140. https://doi.org/10.1016/S0006-3495(03)74461-0
  20. Bredas, J.-L.; Norton, J. E.; Cornil, J.; Coropceanu, V. Acc. Chem. Res. 2009, 42, 1691. https://doi.org/10.1021/ar900099h
  21. Chasteen, S. V.; Sholin, V.; Carter, S. A.; Rumbles, G. Solar Energy Materials and Solar Cells 2008, 92, 651. https://doi.org/10.1016/j.solmat.2008.01.014
  22. Mukamel, S. Principles of Nonlinear Spectroscopy; Oxford University Press: New York, 1995; p 14.
  23. Jonas, D. M. Annu. Rev. Phys. Chem. 2003, 54, 425. https://doi.org/10.1146/annurev.physchem.54.011002.103907
  24. Cho, M. Chem. Rev. 2008, 108, 1331. https://doi.org/10.1021/cr078377b
  25. Cho, M.; Vaswani, H. M.; Brixner, T.; Stenger, J.; Fleming, G. R. J. Phys. Chem. B 2005, 109, 10542. https://doi.org/10.1021/jp050788d
  26. Engel, G. S.; Calhoun, T. R.; Read, E. L.; Ahn, T.-K.; Mancal, T.; Cheng, Y.-C.; Blankenship, R. E.; Fleming, G. R. Nature 2007, 446, 782. https://doi.org/10.1038/nature05678
  27. Collini, E.; Wong, C. Y.; Wilk, K. E.; Curmi, P. M. G.; Brumer, P.; Scholes, G. D. Nature 2010, 463, 644. https://doi.org/10.1038/nature08811
  28. Schlau-Cohen, G. S.; Ishizaki, A.; Fleming, G. R. Chem. Chem. Chem. Phys. 2010, 12, 108. https://doi.org/10.1039/b916723d
  29. Panitchayangkoon, G.; Hayes, D.; Fransted, K. A.; Jang, J. R.; Caram, Harel, E.; Wen, J.; Blankenship, R. E.; Engel, G. S. Proc. Natl. Acad. Sci. USA 2010, 107, 12766. https://doi.org/10.1073/pnas.1005484107
  30. Olbrich, C.; Jansen, T. L. C.; Liebers, J.; Aghtar, M.; Strumpfer, J.; Schulten, K.; Knoester, J.; Kleinekathofer, U. J. Phys. Chem. B 2011, 115, 8609. https://doi.org/10.1021/jp202619a
  31. Abramvicius, D.; Mukamel, S. J. Chem. Phys. 2010, 133, 064510. https://doi.org/10.1063/1.3458824
  32. Sharp, L. Z.; Egorova, D.; Domcke, W. J. Chem. Phys. 2010, 132, 014501 https://doi.org/10.1063/1.3268705
  33. Chen, L.; Zheng, R.; Jing, Y.; Shi, Q. J. Chem. Phys. 2011, 134, 194508. https://doi.org/10.1063/1.3589982
  34. Plamieri, B.; Abramvicius, D.; Mukamel, S. Phys. Chem. Chem. Phys. 2010, 12, 108. https://doi.org/10.1039/b916723d
  35. Sung, J.; Silbey, R. J. J. Chem. Phys. 2011, 115, 9266. https://doi.org/10.1063/1.1413979
  36. Jang, S.; Cao, J.; Silbey, R. J. J. Chem. Phys. 2002, 116. 2705. https://doi.org/10.1063/1.1445105
  37. Jang, S.; Silbey, R. J. J. Chem. Phys. 2003, 118, 9312. https://doi.org/10.1063/1.1569239

피인용 문헌

  1. Improving long time behavior of Poisson bracket mapping equation: A mapping variable scaling approach vol.141, pp.12, 2014, https://doi.org/10.1063/1.4895962
  2. Delocalized excitons in natural light-harvesting complexes vol.90, pp.3, 2018, https://doi.org/10.1103/RevModPhys.90.035003