DOI QR코드

DOI QR Code

Behavior of Poisson Bracket Mapping Equation in Studying Excitation Energy Transfer Dynamics of Cryptophyte Phycocyanin 645 Complex

  • Lee, Weon-Gyu (Institute of Theoretical and Computational Chemistry, Department of Chemistry, Pohang University of Science and Technology (POSTECH)) ;
  • Kelly, Aaron (Institute of Theoretical and Computational Chemistry, Department of Chemistry, Pohang University of Science and Technology (POSTECH)) ;
  • Rhee, Young-Min (Institute of Theoretical and Computational Chemistry, Department of Chemistry, Pohang University of Science and Technology (POSTECH))
  • Received : 2011.12.05
  • Accepted : 2012.01.07
  • Published : 2012.03.20

Abstract

Recently, it has been shown that quantum coherence appears in energy transfers of various photosynthetic lightharvesting complexes at from cryogenic to even room temperatures. Because the photosynthetic systems are inherently complex, these findings have subsequently interested many researchers in the field of both experiment and theory. From the theoretical part, simplified dynamics or semiclassical approaches have been widely used. In these approaches, the quantum-classical Liouville equation (QCLE) is the fundamental starting point. Toward the semiclassical scheme, approximations are needed to simplify the equations of motion of various degrees of freedom. Here, we have adopted the Poisson bracket mapping equation (PBME) as an approximate form of QCLE and applied it to find the time evolution of the excitation in a photosynthetic complex from marine algae. The benefit of using PBME is its similarity to conventional Hamiltonian dynamics. Through this, we confirmed the coherent population transfer behaviors in short time domain as previously reported with a more accurate but more time-consuming iterative linearized density matrix approach. However, we find that the site populations do not behave according to the Boltzmann law in the long time limit. We also test the effect of adding spurious high frequency vibrations to the spectral density of the bath, and find that their existence does not alter the dynamics to any significant extent as long as the associated reorganization energy is changed not too drastically. This suggests that adopting classical trajectory based ensembles in semiclassical simulations should not influence the coherence dynamics in any practical manner, even though the classical trajectories often yield spurious high frequency vibrational features in the spectral density.

Keywords

References

  1. Lee, H.; Cheng, Y.-C.; Fleming, G. R. Science 2007, 316, 1462. https://doi.org/10.1126/science.1142188
  2. Engel, G. S.; Calhoun, T. R.; Read, E. L.; Ahn, T.-K.; Mancal, T.; Cheng, Y.-C.; Blankenship, R. E.; Fleming, G. R. Nature 2007, 446, 782. https://doi.org/10.1038/nature05678
  3. Collini, E.; Wong, C. Y.; Wilk, K. E.; Curmi, P. M. G.; Brumer, P.; Scholes, G. D. Nature 2010, 463, 644. https://doi.org/10.1038/nature08811
  4. Panitchayangkoona, G.; Hayes, D.; Fransted, K. A.; Caram, J. R.; Harel, E.; Wen, J.; Blankenship, R. E.; Engel, G. S. Proc. Natl. Acad. Sci. U.S.A. 2010, 107, 12766. https://doi.org/10.1073/pnas.1005484107
  5. van der Weij-De Wit, C. D.; Doust, A. B.; van Stokkum, I. H. M.; Dekker, J. P.; Wilk, K. E.; Curmi, P. M. G.; van Grondelle, R. Biophys. J. 2008, 94, 2423. https://doi.org/10.1529/biophysj.107.113993
  6. edemayer, G. J.; Kidd, D. G.; Wemmer, D. E.; Glazer, A. N. J. Biol. Chem. 1992, 267, 7315.
  7. Mirkovic, T.; Doust, A. B.; Kim, J.; Wilk, K. E.; Curutchet, C.; Mennucci, B.; Cammi, R.; Curmi, P. M. G.; Scholes, G. D. Photochem. Photobio. Sci. 2007, 6, 964.
  8. Kim, H.; Nassimi, A.; Kapral, R. J. Chem. Phys. 2008, 129, 084102. https://doi.org/10.1063/1.2971041
  9. Kelly, A.; Rhee, Y. M. J. Phys. Chem. Lett. 2011, 2, 808. https://doi.org/10.1021/jz200059t
  10. Huo, P.; Coker, D. F. J. Phys. Chem. Lett. 2011, 2, 825. https://doi.org/10.1021/jz200301j
  11. Chandler, D. Introduction to Modern Statistical Mechanics. Oxford University Press, Inc.: New York, 1987.
  12. Nassimi, A.; Bonella, S.; Kapral, R. J. Chem. Phys. 2010, 133, 134115. https://doi.org/10.1063/1.3480018
  13. Thoss, M. Phys. Rev. A 1999, 59, 64. https://doi.org/10.1103/PhysRevA.59.64
  14. Kapral, R.; Ciccotti, G. J. Chem. Phys. 1999, 110, 8919. https://doi.org/10.1063/1.478811
  15. Kapral, R. Annu. Rev. Phys. Chem. 2006, 57, 129. https://doi.org/10.1146/annurev.physchem.57.032905.104702
  16. Nassimi, A. A study of quantum-classical dynamics in the mapping basis. Ph.D. Thesis, Uaersity of Toronto, 2011.
  17. Wang, H.; Song, X.; Chandler, D.; Miller, W. H. J. Chem. Phys. 1999, 110, 4828. https://doi.org/10.1063/1.478388
  18. Shim, S.; Rebentrost, P.; Valleau, S.; Aspuru-Gusik, A. Biophys. J. 2012, 102, 649. https://doi.org/10.1016/j.bpj.2011.12.021
  19. Olbrich, C.; Strumpefer, J.; Schulten, K.; Kleinekathöfer, U. J. Phys. Chem. Lett. 2011, 2, 1771. https://doi.org/10.1021/jz2007676

Cited by

  1. Protein Arrangement Effects on the Exciton Dynamics in the PE555 Complex vol.121, pp.15, 2017, https://doi.org/10.1021/acs.jpcb.6b05803
  2. Improving long time behavior of Poisson bracket mapping equation: A mapping variable scaling approach vol.141, pp.12, 2014, https://doi.org/10.1063/1.4895962
  3. Excitonic Energy Transfer of Cryptophyte Phycocyanin 645 Complex in Physiological Temperature by Reduced Hierarchical Equation of Motion vol.35, pp.3, 2012, https://doi.org/10.5012/bkcs.2014.35.3.858
  4. Effect of Underdamped Vibration on Excitation Energy Transfer: Direct Comparison between Two Different Partitioning Schemes vol.123, pp.6, 2012, https://doi.org/10.1021/acs.jpca.8b10977