DOI QR코드

DOI QR Code

Conformational Preferences of Glycerol in the Gas Phase and in Water

  • Received : 2012.01.02
  • Accepted : 2012.01.05
  • Published : 2012.03.20

Abstract

The conformational study of glycerol has been carried out using the M06-2X/cc-pVTZ level of theory in the gas phase and the SMD M06-2X/cc-pVTZ level of theory in water in order to understand its conformational preferences and solvation effects. Most of the preferred conformers of glycerol have two $C_5$ hydrogen bonds in the gas phase, as found by the analysis of calorimetric data. It has been known that the solvation drove the hydrogen bonds of glycerol to be weaker and its potential surface to be fatter and that glycerol exists as an ensemble of many feasible local minima in water. The calculated populations of glycerol in the gas phase and in water are consistent with the observed values, which are better than the previously calculated ones at the G2(MP2), CBS-QB3, and SM5.42 HF/6-31G(d) levels of theory.

Keywords

References

  1. Brisson, D.; Vohl, M.-C.; St-Pierre, J.; Hudson, T. J.; Gaudet, D. Bioessays 2001, 23, 534. https://doi.org/10.1002/bies.1073
  2. Pagliaro, M.; Ciriminna, R.; Kimura, H.; Rossi, M.; Pina, C. D. Angew. Chem., Int. Ed. 2007, 46, 4434. https://doi.org/10.1002/anie.200604694
  3. Pagliaro, M.; Rossi, M. The Future of Glycerol, 2nd ed.; Clark, J. H.; Kraus, G. A., Eds.; Royal Society of Chemistry: Cambridge, 2010.
  4. Diaz-Alvarez, A. E.; Francos, J.; Lastra-Barreira, B.; Crochet, P.; Cadierno, V. Chem. Commun. 2011, 47, 6208. https://doi.org/10.1039/c1cc10620a
  5. Bastiansen, O. Acta Chem. Scand. 1949, 3, 415. https://doi.org/10.3891/acta.chem.scand.03-0415
  6. van Koningsveld, H. Recl. Trav. Chim. Pays-Bas. 1968, 87, 243. https://doi.org/10.1002/recl.19680870303
  7. van Koningsveld, H. Recl. Trav. Chim. Pays-Bas. 1970, 89, 801. https://doi.org/10.1002/recl.19700890806
  8. Champeney, D. C.; Joarder, R. N.; Dore, J. C. Mol. Phys. 1986, 58, 337. https://doi.org/10.1080/00268978600101201
  9. Garawi, M.; Core, J. C.; Champeney, D. C. Mol. Phys. 1987, 62, 475. https://doi.org/10.1080/00268978700102341
  10. Sarkar, S.; Joarder, R. N. Phys. Lett. A 1996, 222, 195. https://doi.org/10.1016/0375-9601(96)00612-3
  11. Maccaferri, G.; Caminati, W.; Favero, P. G. J. Chem. Soc., Faraday Trans. 1997, 93, 4115. https://doi.org/10.1039/a705645a
  12. Towey, J. J.; Soper, A. K.; Dougan, L. Phys. Chem. Chem. Phys. 2011, 13, 9397. https://doi.org/10.1039/c0cp02136a
  13. van Den Enden, L.; van Alsenoy, C.; Scarsdale, J. N.; Schafer, L. J. Mol. Struct.: THEOCHEM 1983, 104, 471. https://doi.org/10.1016/0166-1280(83)80197-3
  14. van Alsenoy, C.; Klimkowski, V. J.; Ewbank, J. D.; Schafer, L. J. Mol. Struct.: THEOCHEM 1985, 121, 153. https://doi.org/10.1016/0166-1280(85)80055-5
  15. Teppen, B. J.; Cao, M.; Frey, R. F.; van Alsenoy, C.; Miller, D. M.; Schafer, L. J. Mol. Struct.: THEOCHEM 1994, 314, 169. https://doi.org/10.1016/0166-1280(94)03809-Y
  16. Chelli, R.; Gervasio, F. L.; Gellini, C.; Procacci, P.; Cardini, G.; Schettino, V. J. Phys. Chem. A 2000, 104, 5351. https://doi.org/10.1021/jp0000883
  17. Chelli, R.; Gervasio, F. L.; Gellini, C.; Procacci, P.; Cardini, G.; Schettino, V. J. Phys. Chem. A 2000, 104, 11220. https://doi.org/10.1021/jp002677e
  18. Callam, C. S.; Singer, S. J.; Lowary, T. L.; Hadad, C. M. J. Am. Chem. Soc. 2001, 123, 11743 https://doi.org/10.1021/ja011785r
  19. Law, J. M.S.; Fejer, S. N.; Setiadi, D. H.; Chass, G. A.; Viskolcz, B. J. Mol. Struct.: THEOCHEM 2005, 722, 79. https://doi.org/10.1016/j.theochem.2004.11.049
  20. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford, CT, 2009.
  21. Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215. https://doi.org/10.1007/s00214-007-0310-x
  22. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378. https://doi.org/10.1021/jp810292n
  23. Kang, Y. K. J. Mol. Struct.: THEOCHEM 2001, 546, 183. https://doi.org/10.1016/S0166-1280(01)00445-6
  24. Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; John Wiley & Sons: New York, 1986; Chapter 6.
  25. Frisch, A.; Frisch, M. J.; Clemente, F. R.; Trucks, G. W. Gaussian 09 User's Reference; Gaussian, Inc.: Wallingford, CT, 2009.
  26. Kang, Y. K.; Byun, B. J.; Park, H. S. Biopolymers 2010, 95, 51. https://doi.org/10.1002/bip.21534

Cited by

  1. Glycerol Adsorption on Platinum Surfaces: A Density Functional Theory Investigation with van der Waals Corrections vol.118, pp.28, 2014, https://doi.org/10.1021/jp502969s
  2. Observation of a Hydrogen-Bonded 3D Structure of Crystalline Glycerol vol.86, pp.3, 2013, https://doi.org/10.1246/bcsj.20120300
  3. Competing Intramolecular vs. Intermolecular Hydrogen Bonds in Solution vol.15, pp.11, 2014, https://doi.org/10.3390/ijms151119562
  4. Crystallization of Galectin-8 Linker Reveals Intricate Relationship between the N-terminal Tail and the Linker vol.17, pp.12, 2016, https://doi.org/10.3390/ijms17122088
  5. Elucidating Molecular Interactions in Glycerol Adsorption at the Metal-Water Interface with Density Functional Theory vol.35, pp.14, 2012, https://doi.org/10.1021/acs.langmuir.8b02385