DOI QR코드

DOI QR Code

Poly(ethylenimine)-Stabilized Hollow Gold-Silver Bimetallic Nanoparticles: Fabrication and Catalytic Application

  • Shin, Kuan-Soo (Department of Chemistry, Soongsil University) ;
  • Kim, Ji-Hoon (Department of Chemistry, Soongsil University) ;
  • Kim, In-Hyun (Department of Chemistry, Soongsil University) ;
  • Kim, Kwan (Department of Chemistry, Seoul National University)
  • Received : 2011.12.21
  • Accepted : 2012.01.05
  • Published : 2012.03.20

Abstract

Hollow gold-silver bimetallic nanoparticles (AuAg-HNPs) have been synthesized and their optical and structural properties were characterized. Initially Ag nanoparticles (Ag-NPs) were prepared using poly(ethylenimine) (PEI) as a reducing and a stabilizing agent simultaneously. AuAg-HNPs could then be synthesized via galvanic replacement reaction in a PEI aqueous solution by reacting sacrificial Ag template with a precursor compound of Au, i.e., $HAuCl_4$. Due to the presence of abundant amine functional groups in PEI, which could act as the dissolving ligand for AgCl, the precipitation problem of $Ag^+$ in the presence of Cl from $HAuCl_4$ salt was avoided. On this basis, the relatively high concentrations of $HAuCl_4$ and PEI-stabilized Ag nanoparticles could be used for the fabrication of AuAg-HNPs. Because of their increased surface areas and reduced densities, the AuAg-HNPs were expected and confirmed to outperform their solid counterparts in applications such as catalysis for the reduction of 4-nitrophenol in the presence of $NaBH_4$.

Keywords

References

  1. Selvakannan, P. R.; Sastry, M. Chem. Comm. 2005, 1684.
  2. Shukla, S.; Priscilla, A.; Banerjee, M.; Bhonde, R. R.; Ghatak, J.; Satyam, P. V.; Sastry, M. Chem. Mater. 2005, 17, 5000. https://doi.org/10.1021/cm051165f
  3. Schwartzberg, A. M.; Oshiro, T. Y.; Zhang, J. Z.; Huser, T.; Talley, C. E. Anal. Chem. 2006, 78, 4732. https://doi.org/10.1021/ac060220g
  4. Yang, J.; Lee, J.Y.; Too, H. P.; Valiyaveettil, S. J. Phys. Chem. B 2006, 110, 125 https://doi.org/10.1021/jp055306c
  5. Zhang, J. Z. J. Phys. Chem. Lett. 2010, 1, 686. https://doi.org/10.1021/jz900366c
  6. Chen, J.; McLellan, J. M.; Siekkinen, A.; Xiong, Y.; Li, Z. Y.; Xia, Y. J. Am. Chem. Soc. 2006, 128, 14776. https://doi.org/10.1021/ja066023g
  7. Sun, Y.; Xia, Y. J. Am. Chem. Soc. 2004, 126, 3892. https://doi.org/10.1021/ja039734c
  8. Chen, J.; Wiley, B.; McLellan, J.; Xiong, Y.; Li, Z. Y.; Xia, Y. Nano Lett. 2005, 5, 2058. https://doi.org/10.1021/nl051652u
  9. Godbey, W. T.; Wu, K. K.; Mikos, A. G. Proc. Natl. Acad. Sci. U S A 1999, 96, 5177. https://doi.org/10.1073/pnas.96.9.5177
  10. Sun, X.; Dong, S.; Wang, E. Mater. Chem. Phys. 2006, 96, 29. https://doi.org/10.1016/j.matchemphys.2005.06.046
  11. Kim, K.; Lee, H. B.; Lee, J. W.; Park, H. K.; Shin, K. S. Langmuir 2008, 24, 7178. https://doi.org/10.1021/la800733x
  12. Sun, X.; Dong, S.; Wang, E. Langmuir 2005, 21, 4710. https://doi.org/10.1021/la047267m
  13. Kim, K.; Lee, H. B.; Lee, J. W.; Shin, K. S. J. Colloid Interface Sci. 2010, 345, 103. https://doi.org/10.1016/j.jcis.2010.01.039
  14. Shin, K. S.; Kim, J. H. Bull. Korean Chem. Soc. 2011, 32, 2469 https://doi.org/10.5012/bkcs.2011.32.7.2469
  15. Lee, P. C.; Meisel, D. J. Phys. Chem. 1982, 86, 3391. https://doi.org/10.1021/j100214a025
  16. Hayakawa, K.; Tomokazu, Y.; Esumi, K. Langmuir 2003, 19, 5517. https://doi.org/10.1021/la034339l
  17. Lee, K. Y.; Lee, Y. W.; Lee, J. H.; Han, S. W. Colloid Surf. A 2010, 372, 146. https://doi.org/10.1016/j.colsurfa.2010.10.019
  18. Patra, A. K.; Dutta, A.; Bhaumik, A. Catal. Comm. 2010, 11, 651. https://doi.org/10.1016/j.catcom.2010.01.015
  19. Shin, Y.; Dohnalkova, A.; Lin, Y. J. Phys. Chem. C 2010, 114, 5985. https://doi.org/10.1021/jp911004a
  20. Rashid, Md. H.; Bhattacharjee, R. R.; Kotal, A.; Mandal, T. K. Langmuir 2006, 22, 7141. https://doi.org/10.1021/la060939j

Cited by

  1. Bimetallic AuAg Nanoparticles: Enhancing the Catalytic Activity of Au for Reduction Reactions in the Liquid Phase by Addition of Ag vol.14, pp.8, 2013, https://doi.org/10.1002/cphc.201201100
  2. Formation of self-assembled Ag nanoparticles on DNA chains with enhanced catalytic activity vol.15, pp.33, 2013, https://doi.org/10.1039/c3cp51890f
  3. Enhanced catalytic and SERS activities of CTAB stabilized interconnected osmium nanoclusters vol.16, pp.41, 2014, https://doi.org/10.1039/C4CP03068K
  4. Amperometric sensor for ascorbic acid based on a glassy carbon electrode modified with gold-silver bimetallic nanotubes in a chitosan matrix vol.181, pp.1-2, 2014, https://doi.org/10.1007/s00604-013-1104-6
  5. Tunable synthesis of poly(ethylene imine)–gold nanoparticle clusters vol.50, pp.1, 2014, https://doi.org/10.1039/C3CC45090B
  6. Silver nanoparticles/polyethyleneimine/graphene oxide composite combined with surfactant film for construction of an electrochemical biosensor vol.8, pp.14, 2016, https://doi.org/10.1039/C6AY00377J
  7. Synthesis of Polyphenon-60 Functionalized Bimetallic Ag–Pt Nanostructures that Inhibit Proliferation of SiHa Cells vol.28, pp.3, 2017, https://doi.org/10.1007/s10876-016-1142-4
  8. Enhanced catalytic and SERS activities of size-selective Rh NPs on DNA scaffolds vol.5, pp.10, 2017, https://doi.org/10.1039/C6TC05529J
  9. Polymer Encapsulated Self-Assemblies of Ultrasmall Rhenium Nanoparticles: Catalysis and SERS Applications vol.5, pp.11, 2017, https://doi.org/10.1021/acssuschemeng.7b02175
  10. Immobilization of silver nanoparticles obtained by electric discharge method on a track membrane surface vol.79, pp.5, 2017, https://doi.org/10.1134/S1061933X17050088
  11. Biogenic synthesis of metal nanocatalysts using Mimosa pudica leaves for efficient reduction of aromatic nitrocompounds vol.4, pp.71, 2012, https://doi.org/10.1039/c4ra04233f
  12. Shape-selective catalysis and surface enhanced Raman scattering studies using Ag nanocubes, nanospheres and aggregated anisotropic nanostructures vol.498, pp.None, 2017, https://doi.org/10.1016/j.jcis.2017.03.058