DOI QR코드

DOI QR Code

Effect of Pore Geometry on Gas Adsorption: Grand Canonical Monte Carlo Simulation Studies

  • Received : 2011.11.30
  • Accepted : 2012.01.05
  • Published : 2012.03.20

Abstract

In this study, we investigated the pure geometrical effect of porous materials in gas adsorption using the grand canonical Monte Carlo simulations of primitive gas-pore models with various pore geometries such as planar, cylindrical, and random pore geometries. Although the model does not possess atomistic level details of porous materials, our simulation results provided many insightful information in the effect of pore geometry on the adsorption behavior of gas molecules. First, the surface curvature of porous materials plays a significant role in the amount of adsorbed gas molecules: the concave surface such as in cylindrical pores induces more attraction between gas molecules and pore, which results in the enhanced gas adsorption. On the contrary, the convex surface of random pores gives the opposite effect. Second, this geometrical effect shows a nonmonotonic dependence on the gas-pore interaction strength and length. Third, as the external gas pressure is increased, the change in the gas adsorption due to pore geometry is reduced. Finally, the pore geometry also affects the collision dynamics of gas molecules. Since our model is based on primitive description of fluid molecules, our conclusion can be applied to any fluidic systems including reactant-electrode systems.

Keywords

References

  1. Li, W.; Hoa, N. D.; Kim, D. Sensors and Actuators B: Chemical 2010, 149, 184. https://doi.org/10.1016/j.snb.2010.06.002
  2. Li, C.; Su, Y.; Lv, X.; Xia, H.; Wang, Y. Sensors and Actuators B: Chemical 2010, 149, 427. https://doi.org/10.1016/j.snb.2010.05.011
  3. Lee, J. Y.; Olson, D. H.; Pan, L.; Emge, T. J.; Li, J. Adv. Funct. Mater. 2007, 17, 1255. https://doi.org/10.1002/adfm.200600944
  4. elmabkhout, Y.; Serna-Guerrero, R.; Sayari, A. Ind. Eng. Chem. Res. 2010, 49, 359. https://doi.org/10.1021/ie900837t
  5. Liu, Y.; Liu, H.; Hu, Y.; Jiang, J. J. Phys. Chem. B 2009, 113, 12326. https://doi.org/10.1021/jp904872f
  6. Gallo, M.; Glossman-Mitnik, D. J. Phys. Chem. C 2009, 113, 6634 https://doi.org/10.1021/jp809539w
  7. Caskey, S. R.; Wong-Foy, A. G.; Matzger A. J. J. Am. Chem. Soc. 2008, 130, 10870. https://doi.org/10.1021/ja8036096
  8. Xu, X.; Xiao, Y.; Qiao, C. Energy & Fuels 2007, 21, 1688. https://doi.org/10.1021/ef0602832
  9. Reddy, M. K. R.; Xu, Z. P.; Lu, G. Q.; Da Costa, J. C. D. Ind. Eng. Chem. Res. 2006, 45, 7504. https://doi.org/10.1021/ie060757k
  10. Babarao, R.; Eddaoudi, M.; Jiang, J. W. Langmuir 2010, 26, 11196. https://doi.org/10.1021/la100509g
  11. Düren, T.; Sarkisov, L.; Yaghi, O. M.; Snurr, R. Q. Langmuir 2004, 20, 2683 https://doi.org/10.1021/la0355500
  12. McKinlay, A. C.; Xiao, B.; Wragg, D. S.; Wheatley, P. S.; Megson, I. L.; Morris, R. E. J. Am. Chem. Soc. 2008, 130, 10440 https://doi.org/10.1021/ja801997r
  13. Meng, S.; Kaxiras, E.; Zhang, Z. Nano. Lett. 2007, 7, 663. https://doi.org/10.1021/nl062692g
  14. Krishna, R. J. Phys. Chem. C 2009, 113, 19756. https://doi.org/10.1021/jp906879d
  15. Xiang, Z.; Lan, J.; Cao, D.; Shao, X.; Wang, W.; Broom, D. P. J. Phys. Chem. C 2009, 113, 15106. https://doi.org/10.1021/jp906387m
  16. Roussel, T.; Didion, A.; Pellenq, R. J.-M.; Gadiou, R.; Bichara, C.; Vix-Guterl, C. J. Phys. Chem. C 2007, 111, 15863. https://doi.org/10.1021/jp0746906
  17. Roman-Perez, G.; Moaied, M.; Soler, J. M.; Yndurain, F. Phys. Rev. Lett. 2010, 105, 145901. https://doi.org/10.1103/PhysRevLett.105.145901
  18. Park, H. J.; Suh, M. P. Chem. Commun. 2010, 46, 610. https://doi.org/10.1039/b913067e
  19. Arora, G.; Wagner, N. J.; Sandler, S. I. Langmuir 2004, 20, 6268. https://doi.org/10.1021/la036432f
  20. Porcheron, F.; Schoen, M.; Fuchs, A. H. J. Chem. Phys. 2002, 116, 5816. https://doi.org/10.1063/1.1453968
  21. Coasne, B.; Pellenq, R. J.-M. J. Chem. Phys. 2004, 120, 2913 https://doi.org/10.1063/1.1632897
  22. Bohlena, H.; Schoen, M. J. Chem. Phys. 2005, 123, 124714. https://doi.org/10.1063/1.2036987
  23. Puibasset, J. J. Chem. Phys. 2006, 125, 074707. https://doi.org/10.1063/1.2229193
  24. Coasne, B.; Galarneau, A.; Renzo, F. D.; Pellenq, R. J. M. Langmuir 2010, 26, 10872. https://doi.org/10.1021/la100757b
  25. Ma, Q.; Yang, Q.; Zhong, C.; Mi, J.; Liu, D. Langmuir 2010, 26, 5160. https://doi.org/10.1021/la903643f
  26. Chang, R.; Jagannathan, K.; Yethiraj, A. Phys. Rev. E 2004, 69, 051101. https://doi.org/10.1103/PhysRevE.69.051101
  27. Gatica, S. M.; Cole, M. W. Phys. Rev. E 2005, 72, 041602. https://doi.org/10.1103/PhysRevE.72.041602
  28. Vidali, G.; Ihm, G.; Kim, H. Y.; Cole, M. W. Surf. Sci. Rep. 1991, 12, 133.
  29. Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; New York, 1987.
  30. Han, J.-H.; Lee, E.; Park, S.; Chang, R.; Chung, T. D. J. Phys. Chem. C 2010, 114, 9546. https://doi.org/10.1021/jp909382b