References
- Iijima, S. Nature 1991, 354, 56. https://doi.org/10.1038/354056a0
- O'Connell, M. J.; Boul, P.; Ericson, L. M.; Huffman, C.; Wang, Y.; Haroz, E.; Kuper, C.; Tour, J.; Ausman, K. D.; Smalley, R. E. Chem. Phys. Lett. 2001, 342, 265. https://doi.org/10.1016/S0009-2614(01)00490-0
- Baskaran, D.; Mays, J. W.; Bratcher, M. S. Chem. Mater. 2005, 17, 3389. https://doi.org/10.1021/cm047866e
- Nish, A.; Hwang, J.-Y.; Doig, J.; Nicholas, R. J. Nat. Nanotechnol. 2007, 2, 640. https://doi.org/10.1038/nnano.2007.290
- Dieckmann, G. R.; Dalton, A. B.; Johnson, P. A.; Razal, J.; Chen, J.; Giordano, G. M.; Munoz, E.; Musselman, I. H.; Baughman, R. H.; Draper, R. K. J. Am. Chem. Soc. 2003, 125, 1770. https://doi.org/10.1021/ja029084x
- Tallury, S. S.; Pasquinelli, M. A. J. Phys. Chem. B 2010, 114, 9349. https://doi.org/10.1021/jp101191j
- Liu, W.; Yang, C. L.; Zhu, Y. T.; Wang, M. S. J. Phys. Chem. C 2008, 112, 1803. https://doi.org/10.1021/jp076561v
- Xie, Y.; Soh, A. K. Mater. Lett. 2005, 59, 971.
- Wei, C. Nano Lett. 2006, 6, 1627. https://doi.org/10.1021/nl0605770
- Yang, M.; Koutsos, V.; Zaiser, M. J. Phys. Chem. B 2005, 109, 10009. https://doi.org/10.1021/jp0442403
- McCarthy, B.; Coleman, J. N.; Czerw, R.; Dalton, A. B.; Panhuis, M.; Maiti, A.; Drury, A.; Bernier, P.; Nagy, J. B.; Lahr, B.; Byrne, H. J.; Carroll, D. L.; Blau, W. J. J. Phys. Chem. B 2002, 106, 2210. https://doi.org/10.1021/jp013745f
- Jiang, L. Y.; Huang, Y.; Jiang, H.; Ravichandran, G.; Gao, H.; Hwang, K. C.; Liu, B. J. Mech. Phys. Solids 2006, 54, 2436. https://doi.org/10.1016/j.jmps.2006.04.009
- Didenko, V. V.; Moore, V. C.; Baskin, D. S.; Smalley, R. E. Nano Lett. 2005, 5, 1563. https://doi.org/10.1021/nl050840h
- Numata, M.; Asai, M.; Kaneko, K.; Bae, A.-H.; Hasegawa, T.; Sakurai, K.; Shinkai, S. J. Am. Chem. Soc. 2005, 127, 5875. https://doi.org/10.1021/ja044168m
- Li, Q.; Zaiser, M.; Koutsos, V. Phys. Status Solidi A 2004, 201, R89. https://doi.org/10.1002/pssa.200409065
- Gou, J.; Minaie, B.; Wang, B.; Liang, Z. Y.; Zhang, C. Comput. Mater. Sci. 2004, 31, 225. https://doi.org/10.1016/j.commatsci.2004.03.002
- Liu, W.; Yang, L. C.; Zhu, Y. T.; Wang, M. J. Phys. Chem. C 2008, 112, 1803. https://doi.org/10.1021/jp076561v
- Naito, M.; Nobusawa, K.; Onouchi, H.; Nakamura, M.; Yasui, K.; Ikeda, A.; Fujiki, M. J. Am. Chem. Soc. 2008, 130, 16697. https://doi.org/10.1021/ja806109z
- Liao, K.; Li, S. Appl. Phys. Lett. 2001, 79, 4225.
- Hertal, T.; Walkup, R. E.; Avouris, P. Phys. Rev. B 1998, 58, 13870. https://doi.org/10.1103/PhysRevB.58.13870
- Bower, C.; Rosen, R.; Jin, L.; Han, J.; Zhou, O. Appl. Phys. Lett. 1999, 74, 3317. https://doi.org/10.1063/1.123330
- Wong, M.; Paramsothy, M.; Xu, X. J.; Ren, Y.; Li, S.; Liao, K. Polymer 2003, 44, 7757. https://doi.org/10.1016/j.polymer.2003.10.011
- Zhao, W.; Liu, Y. T.; Feng, Q. P.; Xie, X. M.; Wang, X. H.; Ye, X. Y. Journal of Applied Polymer Science 2008, 109, 3525. https://doi.org/10.1002/app.28453
- Teh, S. L.; Linton, D.; Sumpter, B.; Dadmun, M. Macromolecules 2011, 44, 7737. https://doi.org/10.1021/ma200795g
- Kong, H.; Luo, P.; Gao, C.; Yan, D. Polymer 2005, 46, 2472. https://doi.org/10.1016/j.polymer.2005.01.037
- Zhang, C.; Maric, M. Polymers 2011, 3, 1398. https://doi.org/10.3390/polym3031398
- Smith, W.; Yong, C. W.; Rodger, P. M. Mol. Simul. 2002, 28, 385. https://doi.org/10.1080/08927020290018769
- Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Clarendon Press: Oxford, U.K 1987.
- Mayo, S. L.; Olafson, B. D.; Goddard, W. A. J. Phys. Chem. 1990, 94, 8897. https://doi.org/10.1021/j100389a010
- Yu, M.-F.; Kowalewski, T.; Ruoff, R. S. Phys. Rev. Lett. 2000, 85, 1456. https://doi.org/10.1103/PhysRevLett.85.1456
- Minary-Jolandan, M.; Yu, M.-F. J. Appl. Phys. 2008, 103, 073516. https://doi.org/10.1063/1.2903438
Cited by
- Interaction with a BN Nano-Cage vol.33, pp.10, 2012, https://doi.org/10.5012/bkcs.2012.33.10.3338
- Study of the Molecular Interactions between Functionalized Carbon Nanotubes and Chitosan vol.120, pp.4, 2016, https://doi.org/10.1021/acs.jpcc.5b08136
- Preparation of Alkylated and Perfluorinated ZnPc-modified Carbon Nanotubes and their Application as Conductive Fillers for Poly(vinylidene fluoride) Composite Dielectrics vol.38, pp.10, 2017, https://doi.org/10.1002/bkcs.11246
- An Immunologically Modified Nanosystem Based on Noncovalent Binding Between Single-Walled Carbon Nanotubes and Glycated Chitosan vol.17, pp.1533-0338, 2018, https://doi.org/10.1177/1533033818802313
- ELASTIC PROPERTIES OF CNT-ENGINEERED POLYMER COMPOSITES USING MULTI-LEVEL MECHANICS APPROACH vol.3, pp.4, 2012, https://doi.org/10.1142/s1756973711000510
- Multiscale modeling of carbon fiber/carbon nanotube/epoxy hybrid composites: Comparison of epoxy matrices vol.166, pp.None, 2012, https://doi.org/10.1016/j.compscitech.2018.03.006
- Compression Behavior of Al-Mg Phases, Molecular Dynamics Simulation vol.46, pp.None, 2020, https://doi.org/10.4028/www.scientific.net/jera.46.15
- Modeling of carbon nanospheres poly (9-vinylcarbazole) composites interaction: effect of diameter, distance and CNSs number vol.139, pp.7, 2020, https://doi.org/10.1007/s00214-020-02619-7
- Photophysical Properties of the PVK-MEH-PPV/PCBM Composite for Organic Solar Cells Application: Synthesis, Characterization and Computational Study vol.13, pp.17, 2012, https://doi.org/10.3390/polym13172902