DOI QR코드

DOI QR Code

Molecular Dynamics Simulation Study on the Carbon NanotubeInteracting with a Polymer

  • Saha, Leton C. (Department of Nanomaterials Engineering, Pusan National University) ;
  • Mian, Shabeer A. (Department of Nanomaterials Engineering, Pusan National University) ;
  • Jang, Joon-Kyung (Department of Nanomaterials Engineering, Pusan National University)
  • Received : 2011.11.30
  • Accepted : 2012.01.05
  • Published : 2012.03.20

Abstract

Using molecular dynamics simulation method, we studied the carbon nanotube (CNT) non-covalently interacting with a polymer. As the polymer coiled around the CNT, the diameter of CNT deformed by more than 40% of its original value within 50 ps. By considering three different polymers, we conclude that the interaction between the CNT and polymer is governed by the number of repeating units in the polymer, not by the molecular weight of polymer.

Keywords

References

  1. Iijima, S. Nature 1991, 354, 56. https://doi.org/10.1038/354056a0
  2. O'Connell, M. J.; Boul, P.; Ericson, L. M.; Huffman, C.; Wang, Y.; Haroz, E.; Kuper, C.; Tour, J.; Ausman, K. D.; Smalley, R. E. Chem. Phys. Lett. 2001, 342, 265. https://doi.org/10.1016/S0009-2614(01)00490-0
  3. Baskaran, D.; Mays, J. W.; Bratcher, M. S. Chem. Mater. 2005, 17, 3389. https://doi.org/10.1021/cm047866e
  4. Nish, A.; Hwang, J.-Y.; Doig, J.; Nicholas, R. J. Nat. Nanotechnol. 2007, 2, 640. https://doi.org/10.1038/nnano.2007.290
  5. Dieckmann, G. R.; Dalton, A. B.; Johnson, P. A.; Razal, J.; Chen, J.; Giordano, G. M.; Munoz, E.; Musselman, I. H.; Baughman, R. H.; Draper, R. K. J. Am. Chem. Soc. 2003, 125, 1770. https://doi.org/10.1021/ja029084x
  6. Tallury, S. S.; Pasquinelli, M. A. J. Phys. Chem. B 2010, 114, 9349. https://doi.org/10.1021/jp101191j
  7. Liu, W.; Yang, C. L.; Zhu, Y. T.; Wang, M. S. J. Phys. Chem. C 2008, 112, 1803. https://doi.org/10.1021/jp076561v
  8. Xie, Y.; Soh, A. K. Mater. Lett. 2005, 59, 971.
  9. Wei, C. Nano Lett. 2006, 6, 1627. https://doi.org/10.1021/nl0605770
  10. Yang, M.; Koutsos, V.; Zaiser, M. J. Phys. Chem. B 2005, 109, 10009. https://doi.org/10.1021/jp0442403
  11. McCarthy, B.; Coleman, J. N.; Czerw, R.; Dalton, A. B.; Panhuis, M.; Maiti, A.; Drury, A.; Bernier, P.; Nagy, J. B.; Lahr, B.; Byrne, H. J.; Carroll, D. L.; Blau, W. J. J. Phys. Chem. B 2002, 106, 2210. https://doi.org/10.1021/jp013745f
  12. Jiang, L. Y.; Huang, Y.; Jiang, H.; Ravichandran, G.; Gao, H.; Hwang, K. C.; Liu, B. J. Mech. Phys. Solids 2006, 54, 2436. https://doi.org/10.1016/j.jmps.2006.04.009
  13. Didenko, V. V.; Moore, V. C.; Baskin, D. S.; Smalley, R. E. Nano Lett. 2005, 5, 1563. https://doi.org/10.1021/nl050840h
  14. Numata, M.; Asai, M.; Kaneko, K.; Bae, A.-H.; Hasegawa, T.; Sakurai, K.; Shinkai, S. J. Am. Chem. Soc. 2005, 127, 5875. https://doi.org/10.1021/ja044168m
  15. Li, Q.; Zaiser, M.; Koutsos, V. Phys. Status Solidi A 2004, 201, R89. https://doi.org/10.1002/pssa.200409065
  16. Gou, J.; Minaie, B.; Wang, B.; Liang, Z. Y.; Zhang, C. Comput. Mater. Sci. 2004, 31, 225. https://doi.org/10.1016/j.commatsci.2004.03.002
  17. Liu, W.; Yang, L. C.; Zhu, Y. T.; Wang, M. J. Phys. Chem. C 2008, 112, 1803. https://doi.org/10.1021/jp076561v
  18. Naito, M.; Nobusawa, K.; Onouchi, H.; Nakamura, M.; Yasui, K.; Ikeda, A.; Fujiki, M. J. Am. Chem. Soc. 2008, 130, 16697. https://doi.org/10.1021/ja806109z
  19. Liao, K.; Li, S. Appl. Phys. Lett. 2001, 79, 4225.
  20. Hertal, T.; Walkup, R. E.; Avouris, P. Phys. Rev. B 1998, 58, 13870. https://doi.org/10.1103/PhysRevB.58.13870
  21. Bower, C.; Rosen, R.; Jin, L.; Han, J.; Zhou, O. Appl. Phys. Lett. 1999, 74, 3317. https://doi.org/10.1063/1.123330
  22. Wong, M.; Paramsothy, M.; Xu, X. J.; Ren, Y.; Li, S.; Liao, K. Polymer 2003, 44, 7757. https://doi.org/10.1016/j.polymer.2003.10.011
  23. Zhao, W.; Liu, Y. T.; Feng, Q. P.; Xie, X. M.; Wang, X. H.; Ye, X. Y. Journal of Applied Polymer Science 2008, 109, 3525. https://doi.org/10.1002/app.28453
  24. Teh, S. L.; Linton, D.; Sumpter, B.; Dadmun, M. Macromolecules 2011, 44, 7737. https://doi.org/10.1021/ma200795g
  25. Kong, H.; Luo, P.; Gao, C.; Yan, D. Polymer 2005, 46, 2472. https://doi.org/10.1016/j.polymer.2005.01.037
  26. Zhang, C.; Maric, M. Polymers 2011, 3, 1398. https://doi.org/10.3390/polym3031398
  27. Smith, W.; Yong, C. W.; Rodger, P. M. Mol. Simul. 2002, 28, 385. https://doi.org/10.1080/08927020290018769
  28. Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Clarendon Press: Oxford, U.K 1987.
  29. Mayo, S. L.; Olafson, B. D.; Goddard, W. A. J. Phys. Chem. 1990, 94, 8897. https://doi.org/10.1021/j100389a010
  30. Yu, M.-F.; Kowalewski, T.; Ruoff, R. S. Phys. Rev. Lett. 2000, 85, 1456. https://doi.org/10.1103/PhysRevLett.85.1456
  31. Minary-Jolandan, M.; Yu, M.-F. J. Appl. Phys. 2008, 103, 073516. https://doi.org/10.1063/1.2903438

Cited by

  1. Interaction with a BN Nano-Cage vol.33, pp.10, 2012, https://doi.org/10.5012/bkcs.2012.33.10.3338
  2. Study of the Molecular Interactions between Functionalized Carbon Nanotubes and Chitosan vol.120, pp.4, 2016, https://doi.org/10.1021/acs.jpcc.5b08136
  3. Preparation of Alkylated and Perfluorinated ZnPc-modified Carbon Nanotubes and their Application as Conductive Fillers for Poly(vinylidene fluoride) Composite Dielectrics vol.38, pp.10, 2017, https://doi.org/10.1002/bkcs.11246
  4. An Immunologically Modified Nanosystem Based on Noncovalent Binding Between Single-Walled Carbon Nanotubes and Glycated Chitosan vol.17, pp.1533-0338, 2018, https://doi.org/10.1177/1533033818802313
  5. ELASTIC PROPERTIES OF CNT-ENGINEERED POLYMER COMPOSITES USING MULTI-LEVEL MECHANICS APPROACH vol.3, pp.4, 2012, https://doi.org/10.1142/s1756973711000510
  6. Multiscale modeling of carbon fiber/carbon nanotube/epoxy hybrid composites: Comparison of epoxy matrices vol.166, pp.None, 2012, https://doi.org/10.1016/j.compscitech.2018.03.006
  7. Compression Behavior of Al-Mg Phases, Molecular Dynamics Simulation vol.46, pp.None, 2020, https://doi.org/10.4028/www.scientific.net/jera.46.15
  8. Modeling of carbon nanospheres poly (9-vinylcarbazole) composites interaction: effect of diameter, distance and CNSs number vol.139, pp.7, 2020, https://doi.org/10.1007/s00214-020-02619-7
  9. Photophysical Properties of the PVK-MEH-PPV/PCBM Composite for Organic Solar Cells Application: Synthesis, Characterization and Computational Study vol.13, pp.17, 2012, https://doi.org/10.3390/polym13172902