DOI QR코드

DOI QR Code

Very Efficient Nucleophilic Aromatic Fluorination Reaction in Molten Salts: A Mechanistic Study

  • Jang, Sung-Woo (Department of Applied Chemistry, Kyunghee University) ;
  • Park, Sung-Woo (Department of Applied Chemistry, Kyunghee University) ;
  • Lee, Byoung-Se (Department of Chemistry, Sogang University) ;
  • Chi, Dae-Yoon (Department of Chemistry, Sogang University) ;
  • Song, Choong-Eui (Department of Chemistry and Department of Energy Science, Sungkyunkwan University) ;
  • Lee, Sung-Yul (Department of Applied Chemistry, Kyunghee University)
  • Received : 2011.11.10
  • Accepted : 2012.01.04
  • Published : 2012.03.20

Abstract

We report a quantum chemical study of an extremely efficient nucleophilic aromatic fluorination in molten salts. We describe that the mechanism involves solvent anion interacting with the ion pair nucleophile $M^+F^-$(M = Na, K, Rb, Cs) to accelerate the reaction. We show that our proposed mechanism may well explain the excellent efficiency of molten salts for SNAr reactions, the relative efficacy of the metal cations, and also the observed large difference in rate constants in two molten salts $(n-C_4H_9)_4N^+\;CX_3SO_3^-$, (X=H, F) with slightly different sidechain ($-CH_3$ vs. $-CF_3$).

Keywords

References

  1. Pawlas, J.; Pedso, P.; Jakobsen, P.; Huusfeldt, P. O.; M. Begtrup, H. J. Org. Chem. 2002, 67, 585. https://doi.org/10.1021/jo010395k
  2. Acevedo, O.; Jorgensen, W. L. Org. Lett. 2004, 6, 2881. https://doi.org/10.1021/ol049121k
  3. Manka, J. T.; McKenzie, V. C.; Kaszynski, P. J. Org. Chem. 2004, 69, 1967 https://doi.org/10.1021/jo0302399
  4. Peishoff, C.E.; Jorgensen, W. L. J. Org. Chem. 1985, 50, 1056. https://doi.org/10.1021/jo00207a030
  5. Glukhovtsev, M. N.; Bach, R. D.; Laiter, S. J. Org. Chem. 1997, 62, 4036. https://doi.org/10.1021/jo962096e
  6. Terrier, F. Chem. Rev. 1982, 62, 77.
  7. Terrier, F. Nucleophilic Aromatic Displacement; VHC, Weinheim: Germany, 1991.
  8. Dobele, M.; Vanderheiden, S.; Jung, N.; Brase, S. Angew. Chem. Int. Ed. 2010, 49, 5986. https://doi.org/10.1002/anie.201001507
  9. Chu, C.-K.; Kim, J.-H.; Kim, D. W.; Chung, K.-H.; Katzenellenbogen, J. A.; Chi, D. Y. Bull. Korean Chem. Soc. 2005, 26, 599. https://doi.org/10.5012/bkcs.2005.26.4.599
  10. Pike, V. W.; Aigbirhio, F. I. J. Chem. Soc., Chem. Commun. 1995, 2215.
  11. Miller, P. W.; Long, N. J.; Vilar, R.; Gee, A. D. Angew. Chem. Int. Ed. 2008, 47, 8998. https://doi.org/10.1002/anie.200800222
  12. Olma, S.; Ermert, J.; Coenen, H. H.. J. Label. Compd. Radiopharm. 2006, 49, 1037. https://doi.org/10.1002/jlcr.1121
  13. Kuhnast, B.; Hinnen, F.; Boisgard, R.; Tavitian, B.; Dolle, F. J. Label. Compd. Radiopharm. 2003, 46, 1093. https://doi.org/10.1002/jlcr.742
  14. Ermert, J.; Hocke, C.; Ludwig, T.; Gail, R.; Coenen, H. H. J. Label. Compd. Radiopharm. 2004, 47, 429. https://doi.org/10.1002/jlcr.830
  15. Ross, T. L.; Ermert, J.; Hocke, C.; Coenen, H. H. J. Am. Chem. Soc. 2007, 129, 8018. https://doi.org/10.1021/ja066850h
  16. McNulty, J.; Nair, J. J.; Robertson, A. Org. Lett. 2007, 9, 4575. https://doi.org/10.1021/ol702081g
  17. Chakraborti, A. K.; Roy, S. R. J. Am. Chem. Soc. 2009, 131, 6902. https://doi.org/10.1021/ja900076a
  18. Roy, S. R.; Chakraborti, A. K. Org. Lett. 2010, 12, 3866. https://doi.org/10.1021/ol101557t
  19. Xu, J.-M.; Liu, B.-K.; Wu, W.-B.; Qian, C.; Wu, Q.; Lin, X.-F. J. Org. Chem. 2006, 71, 3991. https://doi.org/10.1021/jo0600914
  20. D'Anna, F.; Frenna, V.; Noto, R.; Pace, V.; Spinelli, D. J. Org. Chem. 2004, 71, 5144. https://doi.org/10.1021/jo060435q
  21. Welton, T. Chem. Rev. 1999, 99, 2071. https://doi.org/10.1021/cr980032t
  22. Lancaster, N. L.; Welton, T.; Young, G. B. J. Chem. Soc., Perkin Trans. 2002, 226.
  23. Chiappe, C.; Conte, V.; Pieraccini, D. Eur. J. Org. Chem. 2002, 2831.
  24. Chiappe, C.; Pieraccini, D.; Saullo, P. J. Org. Chem. 2003, 68, 6710. https://doi.org/10.1021/jo026838h
  25. Chiappe, C.; Pieraccini, D. J. Org. Chem. 2004, 69, 6059. https://doi.org/10.1021/jo049318q
  26. Crowhurst, L.; Lancaster, N. L.; Arlandis, J. M. P.; Welton, T. J. Am. Chem. Soc. 2004, 126, 11549. https://doi.org/10.1021/ja046757y
  27. Lancaster, N. L.; Welton, T. J. Org. Chem. 2004, 69, 5986 https://doi.org/10.1021/jo049636p
  28. Laali, K. K.; Sarca, V. D.; Okazaki, T.; Brock, A.; Der, O. Org. Biomol. Chem. 2005, 3, 1034. https://doi.org/10.1039/b416997b
  29. D'Anna, F.; Frenna, V.; Noto, R.; Pace, V.; Spinelli, D. J. Org. Chem. 2005, 70, 2828. https://doi.org/10.1021/jo048485n
  30. Liu, J.; Janeba, Z.; Robins, M. J. Org. Lett. 2004, 6, 2917. https://doi.org/10.1021/ol048987n
  31. Liu, J.; Robins, M. J. J. Am. Chem. Soc. 2007, 129, 5962. https://doi.org/10.1021/ja070021u
  32. Yadav, J. S.; Reddy, B. C. S.; Basak, A. K.; Narsaiah, A. V. Tetrahedron Lett. 2003, 44, 2217. https://doi.org/10.1016/S0040-4039(03)00037-6
  33. Lee, C.; Yang, W.; Parr, R P. Phys. Rev. 1988, B 37, 785.
  34. Becke, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
  35. Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299. https://doi.org/10.1063/1.448975
  36. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T. A.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala,P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian, Inc. Pittsburgh, PA, 2003.
  37. Chi, D. Y.; Lee, B. S. (to be published).
  38. Park, S.-W.; Lee, S. Bull. Korean Chem. Soc. 2010, 31, 2571. https://doi.org/10.5012/bkcs.2010.31.9.2571
  39. Oh, Y.-H.; Ahn, D.-S.; Chung, S.-Y.; Jeon, J.-H.; Park, S.-W.; Oh, S. J.; Kim, D. W.; Kil, H. S.; Chi, D. Y.; Lee, S. J. Phys. Chem. A 2007, 111, 10152. https://doi.org/10.1021/jp0743929
  40. Kim, D. W.; Ahn, D.-S.; Oh, Y.-H.; Lee, S.; Kil, H.-S.; Oh, S. J.; Lee, S.; Kim, J. S.; Ryu, J. S.; Moon, D. H.; Chi, D. Y. J. Am. Chem. Soc. 2006, 128, 16394. https://doi.org/10.1021/ja0646895
  41. Im, S.; Jang, S.-W.; Kim, H.-R.; Oh, Y.-H.; Park, S.-W.; Lee, S.; Chi, D. Y. J. Phys. Chem. A 2009, 113, 3685. https://doi.org/10.1021/jp900576x
  42. Lee, J. W.; Yan, H.; Jang, H. B.; Kim, H. K.; Park, S.-W.; Lee, S.; Chi, D. Y.; Song, C. E. Angew. Chem. Int. Ed. 2009, 48, 7683. https://doi.org/10.1002/anie.200903903
  43. Oh, Y.-H.; Jang, H. B.; Im, S.; Song, M. J.; Kim, S.-Y.; Park, S.- W.; Chi, D. Y.; Song, C. E.; Lee, S. Org. Biomol. Chem. 2011, 9, 418. https://doi.org/10.1039/c0ob00426j
  44. Anguille, S.; Garayt, M.; Schanen, V.; Grée, R. Adv. Synth. Catal. 2006, 348, 1149. https://doi.org/10.1002/adsc.200606086
  45. Kim, D. W.; Song, C. E.; Chi, D. Y. J. Org. Chem. 2003, 68, 4281. https://doi.org/10.1021/jo034109b
  46. Jorapur, Y. R.; Lee, C.-H.; Chi, D. Y. Org. Lett. 2005, 7, 1231. https://doi.org/10.1021/ol047446v
  47. Pliego, J. R., Jr. J. Phys. Chem. B 2009, 113, 505. https://doi.org/10.1021/jp808581t
  48. Pliego, J. R., Jr.; Pilo-Velose, D. Phys. Chem. Chem. Phys. 2008, 10, 1118. https://doi.org/10.1039/b716159j

Cited by

  1. Modern Carbon–Fluorine Bond Forming Reactions for Aryl Fluoride Synthesis vol.115, pp.2, 2015, https://doi.org/10.1021/cr500366b
  2. F-Labeling of Arenes and Heteroarenes for Applications in Positron Emission Tomography vol.116, pp.2, 2016, https://doi.org/10.1021/acs.chemrev.5b00493
  3. Nucleophilic substitution reactions promoted by oligoethylene glycols: a mechanistic study of ion‐pair SN2 processes facilitated by Lewis base vol.26, pp.1, 2012, https://doi.org/10.1002/poc.3010
  4. Reaction-Based Amine and Alcohol Gases Detection with Triazine Ionic Liquid Materials vol.25, pp.1, 2012, https://doi.org/10.3390/molecules25010104