DOI QR코드

DOI QR Code

Pharmacophore Modeling and Molecular Dynamics Simulation to Find the Potent Leads for Aurora Kinase B

  • Sakkiah, Sugunadevi (Division of Applied Life Science (BK21 Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University(GNU)) ;
  • Thangapandian, Sundarapandian (Division of Applied Life Science (BK21 Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University(GNU)) ;
  • Kim, Yong-Seong (Department of Science Education, Kyungnam University) ;
  • Lee, Keun-Woo (Division of Applied Life Science (BK21 Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University(GNU))
  • Received : 2011.12.20
  • Accepted : 2012.01.03
  • Published : 2012.03.20

Abstract

Identification of the selective chemical features for Aurora-B inhibitors gained much attraction in drug discovery for the treatment of cancer. Hence to identify the Aurora-B critical features various techniques were utilized such as pharmacophore generation, virtual screening, homology modeling, molecular dynamics, and docking. Top ten hypotheses were generated for Aurora-B and Aurora-A. Among ten hypotheses, HypoB1 and HypoA1 were selected as a best hypothesis for Aurora-B and Aurora-A based on cluster analysis and ranking score, respectively. Test set result revealed that ring aromatic (RA) group in HypoB1 plays an essential role in differentiates Aurora-B from Aurora-A inhibitors. Hence, HypoB1 used as 3D query in virtual screening of databases and the hits were sorted out by applying drug-like properties and molecular docking. The molecular docking result revealed that 15 hits have shown strong hydrogen bond interactions with Ala157, Glu155, and Lys106. Hence, we proposed that HypoB1 might be a reasonable hypothesis to retrieve the structurally diverse and selective leads from various databases to inhibit Aurora-B.

Keywords

References

  1. Girdler, F.; Gascoigne, K. E.; Eyers, P. A.; Hartmuth, S.; Crafter, C.; Foote, K. M.; Keen, N. J.; Taylor, S. S. Journal of Cell Science 2006, 119, 3664-3675. https://doi.org/10.1242/jcs.03145
  2. Mortlock, A. A.; Foote, K. M.; Heron, N. M.; Jung, F. H.; Pasquet, G.; Lohmann, J.-J. M.; Warin, N.; Renaud, F.; De Savi, C.; Roberts, N. J.; Johnson, T.; Dousson, C. B.; Hill, G. B.; Perkins, D.; Hatter, G.; Wilkinson, R. W.; Wedge, S. R.; Heaton, S. P.; Odedra, R.; Keen, N. J.; Crafter, C.; Brown, E.; Thompson, K.; Brightwell, S.; Khatri, L.; Brady, M. C.; Kearney, S.; McKillop, D.; Rhead, S.; Parry, T.; Green, S. Journal of Medicinal Chemistry 2007, 50, 2213-2224. https://doi.org/10.1021/jm061335f
  3. Qi, M.; Yu, W.; Liu, S.; Jia, H.; Tang, L.; Shen, M.; Yan, X.; Saiyin, H.; Lang, Q.; Wan, B.; Zhao, S.; Yu, L. Biochemical and Biophysical Research Communications 2005, 336, 994-1000. https://doi.org/10.1016/j.bbrc.2005.06.212
  4. Qi, M.; Yu, W.; Liu, S.; Jia, H.; Tang, L.; Shen, M.; Yan, X.; Saiyin, H.; Lang, Q.; Wan, B.; Zhao, S.; Yu, L. Biochemical and Biophysical Research Communications 2005, 336, 994-1000. https://doi.org/10.1016/j.bbrc.2005.06.212
  5. arumoto, T.; Zhang, D.; Saya, H. Nat. Rev. Cancer 2005, 5, 42- 50. https://doi.org/10.1038/nrc1526
  6. Bolanos-Garcia, V. M. The International Journal of Biochemistry & Cell Biology 2005, 37, 1572-1577. https://doi.org/10.1016/j.biocel.2005.02.021
  7. Stephanie, D.; Simon, D.; Claude, P. Oncogene 2002, 21, 6175- 6183. https://doi.org/10.1038/sj.onc.1205775
  8. Tsai, M. Y.; Wiese, C.; Cao, K.; Martin, O.; Donovan, P.; Ruderman, J.; Prigent, C.; Zheng, Y. Nat. Cell Biol. 2003, 5, 242-248. https://doi.org/10.1038/ncb936
  9. Murata-Hori, M.; Tatsuka, M.; Wang, Y.-L. Molecular Biology of the Cell 2002, 13, 1099-1108. https://doi.org/10.1091/mbc.01-09-0467
  10. Kimura, M.; Matsuda, Y.; Yoshioka, T.; Sumi, N.; Okana, Y. Cytogenet Cell Genet 1998, 82, 147-152. https://doi.org/10.1159/000015089
  11. Tang, C.-J. C.; Lin, C. Y.; Tang, T. K. Developmental Biology 2006, 290, 398-410.. https://doi.org/10.1016/j.ydbio.2005.11.036
  12. Sasai, K.; Katayama, H.; Stenoien, D. L.; Fujii, S.; Honda, R.; Kimura, M.; Okano, Y.; Tatsuka, M.; Suzuki, F.; Nigg, E. A.; Earnshaw, W. C.; Brinkley, W. R.; Sen, S. Cell Motility and the Cytoskeleton 2004, 59, 249-263. https://doi.org/10.1002/cm.20039
  13. Ikezoe, T. Cancer Letters 2008, 262, 1-9. https://doi.org/10.1016/j.canlet.2008.01.005
  14. Tong, T.; Zhong, Y.; Kong, J.; Dong, L.; Song, Y.; Fu, M.; Liu, Z.; Wang, M.; Guo, L.; Lu, S.; Wu, M.; Zhan, Q. Clinical Cancer Research 2004, 10, 7304-7310. https://doi.org/10.1158/1078-0432.CCR-04-0806
  15. Katayama, H.; Ota, T.; Jisaki, F.; Ueda, Y.; Tanaka, T.; Odashima, S.; Suzuki, F.; Terada, Y.; Tatsuka, M. Journal of the National Cancer Institute 1999, 91, 1160-1162. https://doi.org/10.1093/jnci/91.13.1160
  16. Lee, E. C. Y.; Frolov, A.; Li, R.; Ayala, G.; Greenberg, N. M. Cancer Research 2006, 66, 4996-5002. https://doi.org/10.1158/0008-5472.CAN-05-2796
  17. Bischoff, J. R.; Anderson, L.; Zhu, Y.; Mossie, K.; Ng, L.; Souza, B.; Schryver, B.; Flanagan, P.; Clairvoyant, F.; Ginther, C.; Chan, C. S. M.; Novotny, M.; Slamon, D. J.; Plowman, G. D. EMBO J 1998, 17, 3052-3065. https://doi.org/10.1093/emboj/17.11.3052
  18. Zhou, H.; Kuang, J.; Zhong, L.; Kuo, W. L.; Gray, J. W.; Sahin, A.; Brinkley, B. R.; Sen, S. Nature Genetics 1998, 20, 189-193. https://doi.org/10.1038/2496
  19. Sen, S.; Zhou, H.; White, R. A. Oncogene 1997, 14, 2195-2200. https://doi.org/10.1038/sj.onc.1201065
  20. Tanaka, T.; Kimura, M.; Matsunaga, K.; Fukada, D.; Mori, H.; Okano, Y. Cancer Research 1999, 59, 2041-2044.
  21. Chieffi, P.; Cozzolino, L.; Kisslinger, A.; Libertini, S.; Staibano, S.; Mansueto, G.; De Rosa, G.; Villacci, A.; Vitale, M.; Linardopoulos, S.; Portella, G.; Tramontano, D. The Prostate 2006, 66, 326-333. https://doi.org/10.1002/pros.20345
  22. Li, D.; Zhu, J.; Firozi, P. F.; Abbruzzese, J. L.; Evans, D. B.; Cleary, K.; Friess, H.; Sen, S. Clinical Cancer Research 2003, 9, 991-997.
  23. Ke, Y. W.; Dou, Z.; Zhang, J.; Yao, X. B. Cell Research 2003, 13, 69-81. https://doi.org/10.1038/sj.cr.7290152
  24. Marx, J. Science 2001, 292, 426-429. https://doi.org/10.1126/science.292.5516.426
  25. Carvajal, R. D.; Tse, A.; Schwartz, G. K. Clinical Cancer Research 2006, 12, 6869-6875. https://doi.org/10.1158/1078-0432.CCR-06-1405
  26. Monaco, L.; Kolthur-Seetharam, U.; Loury, R.; Murcia, J. M.-d.; de Murcia, G.; Sassone-Corsi, P. Proceedings of the National Academy of Sciences of the United States of America 2005, 102, 14244-14248. https://doi.org/10.1073/pnas.0506252102
  27. Katayama, H.; Sen, S. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1799, 829-839.
  28. Andersen, C. B.; Wan, Y.; Chang, J. W.; Riggs, B.; Lee, C.; Liu, Y.; Sessa, F.; Villa, F.; Kwiatkowski, N.; Suzuki, M.; Nallan, L.; Heald, R.; Musacchio, A.; Gray, N. S. ACS Chemical Biology 2008, 3, 180-192. https://doi.org/10.1021/cb700200w
  29. Doggrell, S. A. Expert Opinion on Investigational Drugs 2004, 13, 1199-1201. https://doi.org/10.1517/13543784.13.9.1199
  30. Fancelli, D.; Moll, J.; Varasi, M.; Bravo, R.; Artico, R.; Berta, D.; Bindi, S.; Cameron, A.; Candiani, I.; Cappella, P.; Carpinelli, P.; Croci, W.; Forte, B.; Giorgini, M. L.; Klapwijk, J.; Marsiglio, A.; Pesenti, E.; Rocchetti, M.; Roletto, F.; Severino, D.; Soncini, C.; Storici, P.; Tonani, R.; Zugnoni, P.; Vianello, P. Journal of Medicinal Chemistry 2006, 49, 7247-7251. https://doi.org/10.1021/jm060897w
  31. Zhao, B.; Smallwood, A.; Yang, J.; Koretke, K.; Nurse, K.; Calamari, A.; Kirkpatrick, R. B.; Lai, Z. Protein Science 2008, 17, 1791- 1797. https://doi.org/10.1110/ps.036590.108
  32. Tari, L. W.; Hoffman, I. D.; Bensen, D. C.; Hunter, M. J.; Nix, J.; Nelson, K. J.; McRee, D. E.; Swanson, R. V. Bioorganic & Medicinal Chemistry Letters 2007, 17, 688-691. https://doi.org/10.1016/j.bmcl.2006.10.086
  33. Howard, S.; Berdini, V.; Boulstridge, J. A.; Carr, M. G.; Cross, D. M.; Curry, J.; Devine, L. A.; Early, T. R.; Fazal, L.; Gill, A. L.; Heathcote, M.; Maman, S.; Matthews, J. E.; McMenamin, R. L.; Navarro, E. F.; O'Brien, M. A.; O'Reilly, M.; Rees, D. C.; Reule, M.; Tisi, D.; Williams, G.; Vinkovicì, M.; Wyatt, P. G. Journal of Medicinal Chemistry 2008, 52, 379-388. https://doi.org/10.1021/jm800984v
  34. Rawson, T. E.; Ruth, M.; Blackwood, E.; Burdick, D.; Corson, L.; Dotson, J.; Drummond, J.; Fields, C.; Georges, G. J.; Goller, B.; Halladay, J.; Hunsaker, T.; Kleinheinz, T.; Krell, H.-W.; Li, J.; Liang, J.; Limberg, A.; McNutt, A.; Moffat, J.; Phillips, G.; Ran, Y.; Safina, B.; Ultsch, M.; Walker, L.; Wiesmann, C.; Zhang, B.; Zhou, A.; Zhu, B.-Y.; Ruger, P.; Cochran, A. G. Journal of Medicinal Chemistry 2008, 51, 4465-4475. https://doi.org/10.1021/jm800052b
  35. Smellie, A.; Teig, S. L.; Towbin, P. Journal of Computational Chemistry 1995, 16, 171-187. https://doi.org/10.1002/jcc.540160205
  36. Schormann, N.; Senkovich, O.; Walker, K.; Wright, D. L.; Anderson, A. C.; Rosowsky, A.; Ananthan, S.; Shinkre, B.; Velu, S.; Chattopadhyay, D. Proteins: Structure, Function, and Bioinformatics 2008, 73, 889-901 https://doi.org/10.1002/prot.22115
  37. Purushottamachar, P.; Khandelwal, A.; Chopra, P.; Maheshwari, N.; Gediya, L. K.; Vasaitis, T. S.; Bruno, R. D.; Clement, O. O.; Njar, V. C. O. Bioorganic & Medicinal Chemistry 2007, 15, 3413-3421. https://doi.org/10.1016/j.bmc.2007.03.019
  38. Doddareddy, M. R.; Jung, H. K.; Lee, J. Y.; Lee, Y. S.; Cho, Y. S.; Koh, H. Y.; Pae, A. N. Bioorganic & Medicinal Chemistry 2004, 12, 1605-1611. https://doi.org/10.1016/j.bmc.2004.01.034
  39. Sakkiah, S.; Thangapandian, S.; John, S.; Lee, K. W. Journal of Molecular Structure 2011, 985, 14-26. https://doi.org/10.1016/j.molstruc.2010.08.050
  40. Deng, X.-Q.; Wang, H. Y.; Zhao, Y. L.; Xiang, M. L.; Jiang, P. D.; Cao, Z. X.; Zheng, Y. Z.; Luo, S. D.; Yu, L. T.; Wei, Y. Q.; Yang, S. Y. Chemical Biology & Drug Design 2008, 71, 533-539. https://doi.org/10.1111/j.1747-0285.2008.00663.x
  41. Laskowski, R. A.; MacArthur, M. W.; Moss, D. S.; Thornton, J. M. Journal of Applied Crystallography 1993, 26, 283-291. https://doi.org/10.1107/S0021889892009944
  42. Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A. E.; Berendsen, H. J. C. Journal of Computational Chemistry 2005, 26, 1701-1718. https://doi.org/10.1002/jcc.20291
  43. Berendsen, H. J. C.; van der Spoel, D.; van Drunen, R. Computer Physics Communications 1995, 91, 43-56. https://doi.org/10.1016/0010-4655(95)00042-E
  44. Lindahl, E.; Hess, B.; van der Spoel, D. Journal of Molecular Modeling 2001, 7, 306-317-317
  45. Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. The Journal of Chemical Physics 1995, 103, 8577-8593. https://doi.org/10.1063/1.470117
  46. Hess, B.; Bekker, H.; Berendsen, H. J. C.; Fraaije, J. G. E. M. Journal of Computational Chemistry 1997, 18, 1463-1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  47. Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R. J. Chem. Phys. 1984, 81, 3684-3690. https://doi.org/10.1063/1.448118

Cited by

  1. Molecular Docking and Molecular Dynamics Simulations of the Kinase Domain Inhibitor for an Epidermal Growth Factor Receptor vol.34, pp.8, 2013, https://doi.org/10.5012/bkcs.2013.34.8.2515
  2. Computational prediction models for assessing endocrine disrupting potential of chemicals pp.1532-4095, 2018, https://doi.org/10.1080/10590501.2018.1537132
  3. Methylene blue analogues: In vitro antimicrobial minimum inhibitory concentrations and in silico pharmacophore modelling vol.157, pp.None, 2012, https://doi.org/10.1016/j.ejps.2020.105603