DOI QR코드

DOI QR Code

Calculation of the Absolute Rate of Human Cu/Zn Superoxide Dismutases from Atomic-Level Molecular Dynamics Simulations

  • Lee, Jin-Uk (Corporate R&D Institute, Samsung Electro-Mechanics Co. Ltd.) ;
  • Lee, Woo-Jin (Corporate R&D Institute, Samsung Electro-Mechanics Co. Ltd.) ;
  • Park, Hwang-Seo (Department of Bioscience and Technology, Sejong University) ;
  • Lee, Sang-Youb (Department of Chemistry, Seoul National University)
  • Received : 2011.12.05
  • Accepted : 2012.01.06
  • Published : 2012.03.20

Abstract

Based on the recently derived general expression for the rates of diffusion-controlled reactions, we calculate the rates of dismutation of the superoxide anion radical catalyzed by Cu/Zn superoxide dismutases (SOD). This is the first attempt to calculate the absolute rates of diffusion-controlled enzyme reactions based on the atomiclevel molecular dynamics simulations. All solvent molecules are included explicitly and the effects of the structural flexibility of enzyme, especially those of side chain motions near the active site, are included in the present calculation. In addition, the actual mobility of the substrate molecule is taken into account, which may change as the molecule approaches the active site of enzyme from the bulk solution. The absolute value of the rate constant for the wild type SOD reaction obtained from MD simulation is shown to be in good agreement with the experimental value. The calculated reactivity of a mutant SOD is also in agreement with the experimental result.

Keywords

References

  1. Berg, J. M.; Tymoczko, J. L.; Stryer, L. Biochemistry, 5th ed.; Freeman: New York, 2002.
  2. Northrup, S. H.; Allison, S. A.; McCammon, J. A. J. Chem. Phys. 1984, 80, 1517. https://doi.org/10.1063/1.446900
  3. McCammon, J. A.; Northrup, S. H.; Allison, S. A. J. Phys. Chem. 1986, 90, 3901. https://doi.org/10.1021/j100408a015
  4. Luty, B. A.; McCammon, J. A.; Zhou, H.-X. J. Chem. Phys. 1992, 97, 5682. https://doi.org/10.1063/1.463777
  5. Antosiewicz, J.; Briggs, J. M.; McCammon, J. A. Eur. Biophys. J. 1996, 24, 137.
  6. Antosiewicz, J.; McCammon, J. A. Biophys. J. 1995, 69, 57. https://doi.org/10.1016/S0006-3495(95)79874-5
  7. Song, Y.; Zhang, Y.; Shen, T.; Bajaj, C. L.; McCammon, J. A.; Baker, N. A. Biophys. J. 2004, 86, 2017. https://doi.org/10.1016/S0006-3495(04)74263-0
  8. Chung, S. H.; Allen, T. W.; Kuyucak, S. Biophys. J. 2002, 83, 263. https://doi.org/10.1016/S0006-3495(02)75167-9
  9. Northrup, S. H.; Luton, J. A.; Boles, J. O.; Reynolds, J. C. J. Comput. Aided Mol. Des. 1988, 1, 291. https://doi.org/10.1007/BF01677278
  10. Tan, R. C.; Truong, T. N.; McCammon, J. A.; Sussman, J. L. Biochemistry 1993, 32, 401. https://doi.org/10.1021/bi00053a003
  11. Tara, S.; Elcock, A. H.; Kirchhoff, P. D.; Briggs, J. M.; Radic, Z.; Taylor, P.; McCammon, J. A. Biopolymers 1998, 46, 465. https://doi.org/10.1002/(SICI)1097-0282(199812)46:7<465::AID-BIP4>3.0.CO;2-Y
  12. Wade, R. C.; Davis, M. E.; Luty, B. A.; Madura, J. D.; McCammon, J. A. Biophys. J. 1993, 64, 9. https://doi.org/10.1016/S0006-3495(93)81335-3
  13. Zhou, H. X. Biophys. J. 1993, 64, 1711. https://doi.org/10.1016/S0006-3495(93)81543-1
  14. Zhou, H. X.; Briggs, J. M.; Tara, S.; McCammon, J. A. Biopolymers 1998, 45, 355. https://doi.org/10.1002/(SICI)1097-0282(19980415)45:5<355::AID-BIP4>3.0.CO;2-K
  15. Zhou, H. X.; Szabo, A. Biophys. J. 1996, 71, 2440. https://doi.org/10.1016/S0006-3495(96)79437-7
  16. Huber, G. A.; Kim, S. Biophys. J. 1996, 70, 97. https://doi.org/10.1016/S0006-3495(96)79552-8
  17. Zou, G.; Skeel, R. D.; Subramaniam, S. Biophys. J. 2000, 79, 638. https://doi.org/10.1016/S0006-3495(00)76322-3
  18. Davis, M. E.; Madura, J. D.; Luty, B. A.; McCammon, J. A. Computer Phys. Comm. 1991, 62, 187. https://doi.org/10.1016/0010-4655(91)90094-2
  19. Kim, J.-H.; Lee, S. J. Chem. Phys. 2009, 131, 014503. https://doi.org/10.1063/1.3158469
  20. Lee, S.; Karplus, M. J. Chem. Phys. 1987, 86, 1883. https://doi.org/10.1063/1.452140
  21. Lee, S.; Karplus, M. J. Chem. Phys. 1987, 86, 1904. https://doi.org/10.1063/1.452757
  22. Lee, S.; Karplus, M. J. Chem. Phys. 1992, 96, 1663. https://doi.org/10.1063/1.462914
  23. Yang, S.; Kim, J.; Lee, S. J. Chem. Phys. 1999, 111, 10119. https://doi.org/10.1063/1.480363
  24. Yang, S.; Han, H.; Lee, S. J. Phys. Chem. B 2001, 105, 6017. https://doi.org/10.1021/jp0102419
  25. Lee, J.; Yang, S.; Kim, J.; Lee, S. J. Chem. Phys. 2004, 120, 7564. https://doi.org/10.1063/1.1687680
  26. McCord, J. M.; Fridovich, I. J. Biol. Chem. 1969, 244, 6049.
  27. Rotilio, G.; Bray. R. C.; Fielden, E. M. Biochim. Biophys. Acta. 1972, 268, 605. https://doi.org/10.1016/0005-2744(72)90359-2
  28. Klug, D.; Rabani, J.; Fridovich, I. J. Biol. Chem. 1972, 247, 4839. 27. Tainer, J. A.; Getzoff, E. D.; Richardson, J. S.; Richardson, D. C. Nature 1983, 306, 284. https://doi.org/10.1038/306284a0
  29. Tainer, J. A.; Getzoff, E. D.; Richardson, J. S.; Richardson, D. C. Nature 1983, 306, 284. https://doi.org/10.1038/306284a0
  30. Sines, J. J.; Allison, S. A.; McCammon, J. A. Biochemistry 1990, 29, 9403. https://doi.org/10.1021/bi00492a014
  31. Getzoff, E. D.; Tainer, J. A.; Weiner, P. K.; Kollman, P. A.; Richardson, J. S.; Richardson, D. C. Nature 1983, 306, 287. https://doi.org/10.1038/306287a0
  32. Getzoff, E. D.; Cabelli, D. E.; Fisher, C. L.; Parge, H. E.; Viezzoli, M. S.; Banci, L.; Hallewell, R. A. Nature 1992, 358, 347. https://doi.org/10.1038/358347a0
  33. Sergi, A.; Mauro, F.; Polticelli, F.; O'Neill, P.; Desideri, A. J. Phys. Chem. 1994, 98, 10554. https://doi.org/10.1021/j100092a027
  34. Shen J.; McCammon, J. A. Chem. Phys. 1991, 158, 191. https://doi.org/10.1016/0301-0104(91)87066-5
  35. Luty, B. A.; Amrani, S. E.; McCammon, J. A. J. Am. Chem. Soc. 1993, 115, 11874. https://doi.org/10.1021/ja00078a027
  36. Hart, P. J.; Liu, H.; Pellegrini, M.; Nersissian, A. M.; Gralla, E. B.; Valentine, J. S.; Eisenberg, D. Protein Sci. 1998, 7, 545. https://doi.org/10.1002/pro.5560070302
  37. Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.; Karplus, M. J. Comput. Chem. 1983, 4, 187. https://doi.org/10.1002/jcc.540040211
  38. Osman, R.; Basch, H. J. Am. Chem. Soc. 1984, 106, 5710. https://doi.org/10.1021/ja00331a048
  39. Fisher, C. L.; Cabelli, D. E.; Hallewell, R. A.; Beroza, P.; Lo, T. P.; Getzoff, E. D.; Tainer, J. A. Proteins 1997, 29, 103. https://doi.org/10.1002/(SICI)1097-0134(199709)29:1<103::AID-PROT8>3.0.CO;2-G
  40. Cudd, A.; Fridovich, I. J. Biol. Chem. 1982, 257, 11443.
  41. Argese, E.; Viglino, P.; Rotilio, G.; Scarpa, M.; Rigo, A. Biochemistry 1987, 26, 3224. https://doi.org/10.1021/bi00385a043

Cited by

  1. Dynamics theory for molecular liquids based on an interaction site model vol.19, pp.41, 2017, https://doi.org/10.1039/C7CP05423H
  2. Atomistic description of molecular binding processes based on returning probability theory vol.155, pp.20, 2012, https://doi.org/10.1063/5.0070308