References
- Pyykko, P. Chem. Rev. 1988, 88, 563. https://doi.org/10.1021/cr00085a006
- Pyykko, P. Relativistic Theory of Atoms and Molecules I, II, and III, Springer-Verlag, Berlin.
- Dyall, K. G.; Faegri, K. Relativistic Quantum Chemistry, Oxford.
- Schwerdfeger, P., Ed.; Relativistic Electronic Structure Theory (Part 1 and 2), Elsevier.
- Lee, S. Y.; Lee, Y. S. J. Comp. Chem. 1992, 13, 595. https://doi.org/10.1002/jcc.540130509
- Lee, S. Y.; Lee, Y. S. Chem. Phys. Lett. 1991, 187, 302. https://doi.org/10.1016/0009-2614(91)90430-H
- Kim, M. C.; Lee, S. Y.; Lee, Y. S. Chem. Phys. Lett. 1996, 253, 216. https://doi.org/10.1016/0009-2614(96)00262-X
- Lee, H. S.; Han, Y. K.; Kim, M. C.; Bae, C. B.; Lee, Y. S. Chem. Phys. Lett. 1998, 293, 97. https://doi.org/10.1016/S0009-2614(98)00760-X
- Kim, Y. S.; Lee, S. Y.; Oh, W. S.; Park, B. H.; Han, Y. K.; Park, S. J.; Lee, Y. S. Int. J. Quant. Chem. 1998, 66, 1. https://doi.org/10.1002/(SICI)1097-461X(1998)66:1<1::AID-QUA1>3.0.CO;2-Z
- Kim, Y. S.; Lee, Y. S. J. Chem. Phys. 2003, 119, 12169. https://doi.org/10.1063/1.1626542
- Aa. Jensen, H. J.; Saue, T.; Visscher L. with contributions from Bakken, V., Eliav, E., Enevoldsen, T., Fleig, T., Fossgaard, O., Helgaker, T., Laerdahl, J., Larsen, C. V., Norman, P., Olsen, J., Pernpointner, M., Pedersen, J. K., Ruud, K., Salek, P., van Stralen, J. N. P., Thyssen, J., Visser, O., Winther. T. Dirac, a relativistic ab initio electronic structure program, Release DIRAC04.0 (2004), (http://dirac.chem.sdu.dk).
- Lee, Y. S.; Ermler, W. C.; Pitzer, K. S. J. Chem. Phys. 1977, 67, 5861. https://doi.org/10.1063/1.434793
- Weeks, J. D. Rice, S. A. J. Chem. Phys. 1968, 49, 2741 https://doi.org/10.1063/1.1670479
- Kahn, L. R.; Goddard, W. A. J. Chem. Phys. 1972, 56, 2685. https://doi.org/10.1063/1.1677597
- Ermler, W. C.; Lee, Y. S.; Christiansen, P. A.; Pitzer, K. S. Chem. Phys. Lett. 1981, 81, 70. https://doi.org/10.1016/0009-2614(81)85329-8
- Pitzer, R. M.; Winter, N. W. J. Phys Chem. 1988, 92, 3061. https://doi.org/10.1021/j100322a011
- Dunning, T. H., Jr. J. Chem. Phys. 1989, 90, 1007. https://doi.org/10.1063/1.456153
- Woon, D. E.; Dunning, T. H., Jr. J. Chem. Phys. 1993, 98, 1358. https://doi.org/10.1063/1.464303
- Pacios, L. F.; Christiansen, P. A. J. Chem. Phys. 1985, 82, 2664. https://doi.org/10.1063/1.448263
- Lee, H. S.; Cho, W. K.; Choi, Y. J.; Lee, Y. S. Chem. Phys. 2005, 311, 121. https://doi.org/10.1016/j.chemphys.2004.09.022
- Visscher, L.; Styszynski, J.; Nieuwpoort, W. C. J. Chem. Phys. 1987, 105, 1987.
- Huber, K. P.; Herzberg, G. Molecular Spectra and Molecular Structure IV, Van Nostrand Reinhold Company.
- Kawaguchi, K. J. Chem. Phys. 1988, 88, 4186. https://doi.org/10.1063/1.453825
- Larson, J. W.; McMahon, T. B. Inorg. Chem. 1984, 23, 2029. https://doi.org/10.1021/ic00182a010
- Visscher, L.; Lee, T. J.; Dyall, K. D. J. Chem. Phys. 1996, 105, 8769. https://doi.org/10.1063/1.472655
- Dyall, K. G. Theor. Chem. Acc. 2002, 108, 335. https://doi.org/10.1007/s00214-002-0388-0
- Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200. https://doi.org/10.1139/p80-159
- Visscher, L.; Eliav, E.; Kaldor, U. J. Chem. Phys. 2001, 115, 9720. https://doi.org/10.1063/1.1415746
- de Jong, W. A.; Visscher, L.; Nieuwpoort, W. C. J. Chem. Phys. 1997, 107, 9046. https://doi.org/10.1063/1.475194
- Visser, O.; Visscher, L.; Aerts, P. J. C.; Nieuwpoort, W. C. J. Chem. Phys. 1992, 96, 2910. https://doi.org/10.1063/1.461987
- Tellinghuisen, J. J. Chem. Phys. 1973, 58, 2821. https://doi.org/10.1063/1.1679584
- Tellinghuisen, J. J. Chem. Phys. 1982, 76, 4736. https://doi.org/10.1063/1.442791
Cited by
- Spin–orbit DFT with analytic gradients and applications to heavy element compounds vol.133, pp.12, 2014, https://doi.org/10.1007/s00214-014-1588-0
- (X = F, Cl) for M = Group 4, Group 14, Cerium, and Thorium vol.119, pp.22, 2015, https://doi.org/10.1021/acs.jpca.5b02544
- for M = Group 6, 16, and U as Central Atoms vol.121, pp.5, 2017, https://doi.org/10.1021/acs.jpca.6b11889
- Four-Component Relativistic State-Specific Multireference Perturbation Theory with a Simplified Treatment of Static Correlation vol.121, pp.7, 2017, https://doi.org/10.1021/acs.jpca.6b11348
- Toward Chemical Accuracy in ab Initio Thermochemistry and Spectroscopy of Lanthanide Compounds: Assessing Core–Valence Correlation, Second-Order Spin–Orbit Coupling, and Higher Order Effects in Lanthanide Diatomics vol.13, pp.11, 2017, https://doi.org/10.1021/acs.jctc.7b00408
- Two-component multi-configurational second-order perturbation theory with Kramers restricted complete active space self-consistent field reference function and spin-orbit relativistic effective core potential vol.141, pp.16, 2014, https://doi.org/10.1063/1.4898153
- Composite thermochemistry of gas phase U(VI)-containing molecules vol.141, pp.24, 2014, https://doi.org/10.1063/1.4904721
- Correlation consistent basis sets for actinides. I. The Th and U atoms vol.142, pp.7, 2015, https://doi.org/10.1063/1.4907596
- vol.144, pp.14, 2016, https://doi.org/10.1063/1.4945449
- and CO vol.144, pp.18, 2016, https://doi.org/10.1063/1.4948812
- Dissociation of homonuclear diatomic halogens via multireference coupled cluster calculations vol.112, pp.20, 2012, https://doi.org/10.1080/00268976.2014.906675
- Relativistic state-specific multireference coupled cluster theory description for bond-breaking energy surfaces vol.145, pp.12, 2016, https://doi.org/10.1063/1.4962911
- Bond energy of ThN+: A guided ion beam and quantum chemical investigation of the reactions of thorium cation with N2 and NO vol.151, pp.3, 2012, https://doi.org/10.1063/1.5111534
- Spin-orbit coupling from a two-component self-consistent approach. I. Generalized Hartree-Fock theory vol.151, pp.7, 2019, https://doi.org/10.1063/1.5114901
- Guided Ion Beam and Quantum Chemical Investigation of the Thermochemistry of Thorium Dioxide Cations: Thermodynamic Evidence for Participation of f Orbitals in Bonding vol.59, pp.5, 2012, https://doi.org/10.1021/acs.inorgchem.9b03488
- The DIRAC code for relativistic molecular calculations vol.152, pp.20, 2012, https://doi.org/10.1063/5.0004844