DOI QR코드

DOI QR Code

Two-Component Spin-orbit Effective Core Potential Calculations with an All-electron Relativistic Program DIRAC

  • Park, Young-Choon (Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Lim, Ivan S. (Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Lee, Yoon-Sup (Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2011.11.15
  • Accepted : 2011.12.13
  • Published : 2012.03.20

Abstract

We have implemented two-component spin-orbit relativistic effective core potential (SOREP) methods in an all-electron relativistic program DIRAC. This extends the capacity of the two-component SOREP method to many ground and excited state calculations in a single program. As the test cases, geometries and energies of the small halogen molecules were studied. Several two-component methods are compared by using spin-orbit and scalar relativistic effective core potentials. For the $I_2$ molecule, excitation energies of low-lying excited states agree well with those from corresponding all-electron methods. Efficiencies in SOREP calculations enhanced by using symmetries are also discussed briefly.

Keywords

References

  1. Pyykko, P. Chem. Rev. 1988, 88, 563. https://doi.org/10.1021/cr00085a006
  2. Pyykko, P. Relativistic Theory of Atoms and Molecules I, II, and III, Springer-Verlag, Berlin.
  3. Dyall, K. G.; Faegri, K. Relativistic Quantum Chemistry, Oxford.
  4. Schwerdfeger, P., Ed.; Relativistic Electronic Structure Theory (Part 1 and 2), Elsevier.
  5. Lee, S. Y.; Lee, Y. S. J. Comp. Chem. 1992, 13, 595. https://doi.org/10.1002/jcc.540130509
  6. Lee, S. Y.; Lee, Y. S. Chem. Phys. Lett. 1991, 187, 302. https://doi.org/10.1016/0009-2614(91)90430-H
  7. Kim, M. C.; Lee, S. Y.; Lee, Y. S. Chem. Phys. Lett. 1996, 253, 216. https://doi.org/10.1016/0009-2614(96)00262-X
  8. Lee, H. S.; Han, Y. K.; Kim, M. C.; Bae, C. B.; Lee, Y. S. Chem. Phys. Lett. 1998, 293, 97. https://doi.org/10.1016/S0009-2614(98)00760-X
  9. Kim, Y. S.; Lee, S. Y.; Oh, W. S.; Park, B. H.; Han, Y. K.; Park, S. J.; Lee, Y. S. Int. J. Quant. Chem. 1998, 66, 1. https://doi.org/10.1002/(SICI)1097-461X(1998)66:1<1::AID-QUA1>3.0.CO;2-Z
  10. Kim, Y. S.; Lee, Y. S. J. Chem. Phys. 2003, 119, 12169. https://doi.org/10.1063/1.1626542
  11. Aa. Jensen, H. J.; Saue, T.; Visscher L. with contributions from Bakken, V., Eliav, E., Enevoldsen, T., Fleig, T., Fossgaard, O., Helgaker, T., Laerdahl, J., Larsen, C. V., Norman, P., Olsen, J., Pernpointner, M., Pedersen, J. K., Ruud, K., Salek, P., van Stralen, J. N. P., Thyssen, J., Visser, O., Winther. T. Dirac, a relativistic ab initio electronic structure program, Release DIRAC04.0 (2004), (http://dirac.chem.sdu.dk).
  12. Lee, Y. S.; Ermler, W. C.; Pitzer, K. S. J. Chem. Phys. 1977, 67, 5861. https://doi.org/10.1063/1.434793
  13. Weeks, J. D. Rice, S. A. J. Chem. Phys. 1968, 49, 2741 https://doi.org/10.1063/1.1670479
  14. Kahn, L. R.; Goddard, W. A. J. Chem. Phys. 1972, 56, 2685. https://doi.org/10.1063/1.1677597
  15. Ermler, W. C.; Lee, Y. S.; Christiansen, P. A.; Pitzer, K. S. Chem. Phys. Lett. 1981, 81, 70. https://doi.org/10.1016/0009-2614(81)85329-8
  16. Pitzer, R. M.; Winter, N. W. J. Phys Chem. 1988, 92, 3061. https://doi.org/10.1021/j100322a011
  17. Dunning, T. H., Jr. J. Chem. Phys. 1989, 90, 1007. https://doi.org/10.1063/1.456153
  18. Woon, D. E.; Dunning, T. H., Jr. J. Chem. Phys. 1993, 98, 1358. https://doi.org/10.1063/1.464303
  19. Pacios, L. F.; Christiansen, P. A. J. Chem. Phys. 1985, 82, 2664. https://doi.org/10.1063/1.448263
  20. Lee, H. S.; Cho, W. K.; Choi, Y. J.; Lee, Y. S. Chem. Phys. 2005, 311, 121. https://doi.org/10.1016/j.chemphys.2004.09.022
  21. Visscher, L.; Styszynski, J.; Nieuwpoort, W. C. J. Chem. Phys. 1987, 105, 1987.
  22. Huber, K. P.; Herzberg, G. Molecular Spectra and Molecular Structure IV, Van Nostrand Reinhold Company.
  23. Kawaguchi, K. J. Chem. Phys. 1988, 88, 4186. https://doi.org/10.1063/1.453825
  24. Larson, J. W.; McMahon, T. B. Inorg. Chem. 1984, 23, 2029. https://doi.org/10.1021/ic00182a010
  25. Visscher, L.; Lee, T. J.; Dyall, K. D. J. Chem. Phys. 1996, 105, 8769. https://doi.org/10.1063/1.472655
  26. Dyall, K. G. Theor. Chem. Acc. 2002, 108, 335. https://doi.org/10.1007/s00214-002-0388-0
  27. Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200. https://doi.org/10.1139/p80-159
  28. Visscher, L.; Eliav, E.; Kaldor, U. J. Chem. Phys. 2001, 115, 9720. https://doi.org/10.1063/1.1415746
  29. de Jong, W. A.; Visscher, L.; Nieuwpoort, W. C. J. Chem. Phys. 1997, 107, 9046. https://doi.org/10.1063/1.475194
  30. Visser, O.; Visscher, L.; Aerts, P. J. C.; Nieuwpoort, W. C. J. Chem. Phys. 1992, 96, 2910. https://doi.org/10.1063/1.461987
  31. Tellinghuisen, J. J. Chem. Phys. 1973, 58, 2821. https://doi.org/10.1063/1.1679584
  32. Tellinghuisen, J. J. Chem. Phys. 1982, 76, 4736. https://doi.org/10.1063/1.442791

Cited by

  1. Spin–orbit DFT with analytic gradients and applications to heavy element compounds vol.133, pp.12, 2014, https://doi.org/10.1007/s00214-014-1588-0
  2. (X = F, Cl) for M = Group 4, Group 14, Cerium, and Thorium vol.119, pp.22, 2015, https://doi.org/10.1021/acs.jpca.5b02544
  3. for M = Group 6, 16, and U as Central Atoms vol.121, pp.5, 2017, https://doi.org/10.1021/acs.jpca.6b11889
  4. Four-Component Relativistic State-Specific Multireference Perturbation Theory with a Simplified Treatment of Static Correlation vol.121, pp.7, 2017, https://doi.org/10.1021/acs.jpca.6b11348
  5. Toward Chemical Accuracy in ab Initio Thermochemistry and Spectroscopy of Lanthanide Compounds: Assessing Core–Valence Correlation, Second-Order Spin–Orbit Coupling, and Higher Order Effects in Lanthanide Diatomics vol.13, pp.11, 2017, https://doi.org/10.1021/acs.jctc.7b00408
  6. Two-component multi-configurational second-order perturbation theory with Kramers restricted complete active space self-consistent field reference function and spin-orbit relativistic effective core potential vol.141, pp.16, 2014, https://doi.org/10.1063/1.4898153
  7. Composite thermochemistry of gas phase U(VI)-containing molecules vol.141, pp.24, 2014, https://doi.org/10.1063/1.4904721
  8. Correlation consistent basis sets for actinides. I. The Th and U atoms vol.142, pp.7, 2015, https://doi.org/10.1063/1.4907596
  9. vol.144, pp.14, 2016, https://doi.org/10.1063/1.4945449
  10. and CO vol.144, pp.18, 2016, https://doi.org/10.1063/1.4948812
  11. Dissociation of homonuclear diatomic halogens via multireference coupled cluster calculations vol.112, pp.20, 2012, https://doi.org/10.1080/00268976.2014.906675
  12. Relativistic state-specific multireference coupled cluster theory description for bond-breaking energy surfaces vol.145, pp.12, 2016, https://doi.org/10.1063/1.4962911
  13. Bond energy of ThN+: A guided ion beam and quantum chemical investigation of the reactions of thorium cation with N2 and NO vol.151, pp.3, 2012, https://doi.org/10.1063/1.5111534
  14. Spin-orbit coupling from a two-component self-consistent approach. I. Generalized Hartree-Fock theory vol.151, pp.7, 2019, https://doi.org/10.1063/1.5114901
  15. Guided Ion Beam and Quantum Chemical Investigation of the Thermochemistry of Thorium Dioxide Cations: Thermodynamic Evidence for Participation of f Orbitals in Bonding vol.59, pp.5, 2012, https://doi.org/10.1021/acs.inorgchem.9b03488
  16. The DIRAC code for relativistic molecular calculations vol.152, pp.20, 2012, https://doi.org/10.1063/5.0004844