DOI QR코드

DOI QR Code

Adsorption Mechanisms of NH3 on Chlorinated Si(100)-2×1 Surface

  • Lee, Hee-Soon (Department of Chemistry, College of Natural Sciences, Kyungpook National University) ;
  • Choi, Cheol-Ho (Department of Chemistry, College of Natural Sciences, Kyungpook National University)
  • Received : 2011.08.29
  • Accepted : 2011.11.10
  • Published : 2012.03.20

Abstract

The potential energy surfaces of ammonia molecule adsorptions on the symmetrically chlorinated Si(100)-$2{\times}1$ surface were explored with SIMOMM:MP2/6-31G(d). It was found that the initial nucleophilic attack by ammonia nitrogen to the surface Si forms a $S_N2$ type transition state, which eventually leads to an HCl molecular desorption. The second ammonia molecule adsorption requires much less reaction barrier, which can be rationalized by the surface cooperative effect. In general, it was shown that the surface Si-Cl bonds can be easily subjected to the substitution reactions by ammonia molecules yielding symmetric surface Si-$NH_2$ bonds, which can be a good initial template for subsequent surface chemical modifications. The ammonia adsorptions are in general more facile than the corresponding water adsorption, since ammonia is better nucleophile.

Keywords

References

  1. Choi, C. H.; Gordon, M. S. Theoretical Studies of Silicon Surface Reactions with Main Group Adsorbates; Curtiss, L. A., Gordon, M. S., Eds., Kluwer Academic Publishers: Ch. 4, 2004; 125-190.
  2. Avouris, P.; Wolkow, R. Phys. Rev. B 1989, 39, 5091. https://doi.org/10.1103/PhysRevB.39.5091
  3. Queeney, K. T.; Chabal, Y. J.; Raghavachari, K. Phys. Rev. Lett. 2001, 86, 1046. https://doi.org/10.1103/PhysRevLett.86.1046
  4. Cao, X.; Hamers, R. J. J. Am. Chem. Soc. 2001, 123, 10988 https://doi.org/10.1021/ja0100322
  5. Mui, C.; Wang, G. T.; Bent, S. F.; Musgrave, C. B. J. Chem. Phys. 2001, 114, 10170. https://doi.org/10.1063/1.1370056
  6. Mui, C.; Han, J. H.; Wang, G. T.; Musgrave, C. B.; Bent, S. F. J. Am. Chem. Soc. 2002, 124, 4027. https://doi.org/10.1021/ja0171512
  7. Nakayama, K.; Aldao, C. M.; Weaver, J. H. Phys. Rev. Lett. 1999, 82, 568. https://doi.org/10.1103/PhysRevLett.82.568
  8. Martin-Gago, J. A.; Roman, E.; Refolio, M. C.; Rubio, J. M.; Lopez-Sancho, J.; Hellner, L.; Comtet, G. Surf. Sci. 1999, 424, 82. https://doi.org/10.1016/S0039-6028(99)00015-1
  9. Pi, T. W.; Tsai, S. F.; Ouyang, C. P.; Wen, J. F.; Wu, R. T. Surf. Sci. 2001, 488, 387. https://doi.org/10.1016/S0039-6028(01)01163-3
  10. Lee, H. S.; An, K.-S.; Kim, Y. S.; Choi, C. H. J. Phys. Chem. B 2005, 109, 10909. https://doi.org/10.1021/jp0505983
  11. Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257. https://doi.org/10.1063/1.1677527
  12. Gonzalez, C.; Schlegel, H. B. 1991, 95, 5853. https://doi.org/10.1063/1.461606
  13. Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; Windus, T. L.; Dupuis, M.; Montgomery, J. A., Jr. J. Comp. Chem. 1993, 14, 1347. https://doi.org/10.1002/jcc.540141112
  14. Shoemaker, J. R.; Burgraff, L. W.; Gordon, M. S. J. Phys. Chem. A 1999, 103, 3245. https://doi.org/10.1021/jp982600e
  15. Cho, J.; Choi, C. H. J. Chem. Phys. 2011, 134, 194701 https://doi.org/10.1063/1.3589362
  16. Allinger, N. L.; Yuh, Y. H.; Lii, J. H. J. Amer. Chem. Soc. 1989, 111, 8551. https://doi.org/10.1021/ja00205a001

Cited by

  1. Silicon Surface Functionalization Targeting Si–N Linkages vol.29, pp.1, 2013, https://doi.org/10.1021/la303505s
  2. Adsorption of ammonium from aqueous solutions on environmentally friendly barbecue bamboo charcoal: Characteristics and kinetic and thermodynamic studies vol.34, pp.3, 2014, https://doi.org/10.1002/ep.12036
  3. Ethylenediamine Grafting on Oxide-Free H-, 1/3 ML F-, and Cl-Terminated Si(111) Surfaces vol.27, pp.18, 2015, https://doi.org/10.1021/acs.chemmater.5b03156
  4. Ammonia modification of oxide-free Si(111) surfaces vol.650, pp.None, 2016, https://doi.org/10.1016/j.susc.2016.01.002